WATER-RESOURCES ACTIVITIES OF THE U.S. GEOLOGICAL SURVEY IN NORTH DAKOTA, FISCAL YEAR 1986 Compiled by Cathy R. Martin U.S. GEOLOGICAL SURVEY Open-File Report 87-530 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief U.S. Geological Survey Water Resources Division 821 East Interstate Avenue Bismarck, ND 58501 Copies of this report can be purchased from: U.S. Geological Survey Books and Open-File Reports Federal Center, Bldg. 810 Box 25425 Denver, CO 80225 #### **FOREWARD** The North Dakota District of the U.S. Geological Survey, Water Resources Division, has had a longstanding cooperative program with the State of North Dakota, local, and other Federal agencies. In cooperation with the North Dakota State Water Commission, the North Dakota Geological Survey, and the counties of the State, the U.S. Geological Survey participated in a cooperative program to develop a statewide inventory of ground-water resources. The last of the county ground-water reports, McKenzie County, has been published, thus ending a farsighted program to provide a reconnaissance-level data base (framework), which the North Dakota State Water Commission and the U.S. Geological Survey can continue to expand and which can be used to better manage the ground-water resources of North Dakota. Having completed the county ground-water studies, the U.S. Geological Survey and the North Dakota State Water Commission have undertaken another cooperative effort to advance the knowledge of hydrologic processes in the State—the mechanics of ground-water recharge from snowmelt. This project, based on its scientific merits, was selected by the U.S. Geological Survey as one of the Water Resources Division "Merit Fund" projects for fiscal year 1985. In fiscal year 1986, the District and the North Dakota State Water Commission also will begin a multiyear study of the hydrology of Devils Lake. The District also started a cooperative effort with the U.S. Bureau of Reclamation and the North Dakota State Water Commission to evaluate an aquifer recharge study near the town of Oakes. The Garrison Diversion Unit Commission has proposed aquifer recharge as an additional method for providing irrigation supplies during peak irrigation periods. Other projects with the U.S. Bureau of Reclamation and the State that are designed to provide information that will be of use in developing plans for water management consistent with the Garrison Diversion Unit Commission's recommendations comprise many of the District's current activities. The District is also the lead agency in a cooperative program with the U.S. Bureau of Reclamation regional office in Billings, Mont.; the U.S. Geological Survey Mid-Continent Mapping Center in Rolla, Mo.; and the EROS Data Center in Sioux Falls, S. Dak. The objectives of the program are to develop computer software systems to delineate drainage basins and to estimate contributing and noncontributing areas in a prairie pothole setting. During the year, the District has continued the development of a state-wide data-collection network with the support of various Federal, State, and local agencies. This network continues to provide the core of information necessary for management activities, flood forecasting, and interpretative studies. L. Grady Moore District Chief ## CONTENTS | Introduction | |------------------------------------------------------------| | Origin of the U.S. Geological Survey | | Mission of the Water Resources Division | | Sources of information and Water Resources Division | | publications | | National Water Data Exchange (NAWDEX) program | | Water Data Storage and Retrieval (WATSTORE) system | | Water-data program | | Water Resources Division publications | | North Dakota District | | Funding | | Summary of major water problems | | Quantity | | Quality | | Data-collection program | | Surface-water stations | | Ground-water stationsGround-water stations | | Water-quality stations | | Sediment stations | | | | National trends network for atmospheric deposition | | Water-use data acquisition and dissemination program | | Evaluation of the streamflow collection network for | | North Dakota | | County ground-water studies | | Ground-water resources of McKenzie County, North Dakota | | Regional studies | | Hydrology of area 47, northern Great Plains coal province, | | North Dakota | | Changes in precipitation chemistry resulting from | | coal-fired energy conversion plants in North Dakota | | Hydrology of area 46, northern Great Plains coal province, | | North Dakota | | Special studies | | Hydrologic drainage-basin characteristics determined | | using digital elevation models | | Pumping techniques bias in chemistry of ground-water | | samples | | Water-quality assessment of the Souris River within | | North Dakota | | Hydrology of the lower James River basin in North | | Dakota | | Application of unsaturated zone monitoring and modeling | | techniques to the determination of ground-water recharge | | Evaluation of streamflow-gaging methods for application to | | rivers with flat slopes, North Dakota | | An investigation of the hydrologic and climatologic | | mechanisms controlling the water-surface elevation | | of Devils Lake, North Dakota | | • | # CONTENTS, Continued | Specia] | l studies, Continued | |--------------|---------------------------------------------------------------------------------------------------------------| | - | lood analysis along the Little Missouri River within | | | and adjacent to Theodore Roosevelt National Park, | | | North Dakota | | НΣ | ydrogeochemical controls on the mobility of radiogenic | | | constituents in uraniferous lignite and ash in North | | η. | ata development and analysis for use in the U.S. | | שמ | Bureau of Reclamation model on the James River | | u, | draulic characteristics of aquifers and confining | | п | units in the Fort Union Formation | | E.f | Effects of fallowed land on soil erosion, northeastern | | | North Dakota | | Не | eat and water transport model for seasonally frozen | | | soils in North Dakota | | Gr | cound-water flow in the Marstonmoor aquifer in the | | | vicinity of Chase Lake, North Dakota | | Ge | eneration of a data base for the James River salinity | | | model, North Dakota and South Dakota | | Gı | cound-water flow in the Warwick aquifer, North Dakota | | E | ffects of irrigation and ground-water recharge practices | | | on the quantity and quality of shallow ground water | | | and on soil productivity along the James River, North | | | Dakota | | Energy: | -related studies | | E4 | valuation through modeling of probable surface-water | | | hydrologic effects of future lignite mining and | | | reclamation activities in the Antelope Creek area, | | | Mercer County, North Dakota, and the Wibaux-Beach | | | deposit area, Wibaux County, Montana, and Golden | | | Valley County, North Dakota | | G | eochemistry of the upper Fort Union Group $\frac{1}{2}$ as related | | | to impacts of strip mining of lignite in the | | _ | Gascoyne area, North Dakota | | E, | valuation of probable hydrologic effects of future | | | lignite mining and subsequent reclamation activities | | α. | in the M & M deposit, Williams County, North Dakota | | S | urface-water resources, Fort Union coal region of | | <b>77</b> 1. | western North Dakota | | E. | valuation of the hydrologic system in the New England-<br>Mott coal area, Adams and Hettinger Counties, North | | | Dakota | | | DAVOCA | $\frac{1}{2}$ The term "Fort Union Group" conforms to the usage of the North Dakota Geological Survey and does not conform to the usage of the U.S. Geological Survey. # CONTENTS, Continued | | Page | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------| | Energy-related studies, Continued Hydrochemical impacts of surface mining of sulfur cycle | _ | | Evaluation of effects of ongoing and future reclamation activities in western North | e mining and | | Hydrogeologic and geochemical data base for in North Dakota | or coal areas | | Evaluation of the potential for toxic-element due to the Garrison Diversion Unit, North South Dakota | ment consequences<br>th Dakota and | | Evaporation and ground-water interaction of Lake, North Dakota | of Devils | | Boards and commissions | 90 92 | | SUPPLEMENT | | | Supplement 1. Publications by personnel of the Survey, North Dakota District, | for 1984, 1985, | | and 1986 | 93 | | ILLUSTRATIONS | | | Figure 1. Diagram showing North Dakota Districture | | | 2. Pie diagram showing percentage of sprincipal sources for fiscal year in the second seco | | | 3. Pie diagram showing percentage of : for fiscal year 1986 | investigations | | 4. Map showing average annual precipi<br>in inches. (John W. Enz, North Dal | tation (1951-80), | | University, written commun., 1984. | | | of North Dakota6. Map showing locations of major glad | 14 | | aquifers. (Modified from North Dal<br>Water Commission, 1982. Map showing | kota State | | aquifers in North Dakota and estima<br>yields. North Dakota State Water ( | ated potential | | scale 1:500,000, 1 sheet.) | 16 | | 7. Map showing mean dissolved-solids of the principal rivers of North Date | akota 17 | | 8. Map showing prevalent principal dis<br>constituents in surface waters———————————————————————————————————— | 18 | | <ol> <li>Map showing locations of lake, cress<br/>stream-gaging stations</li> </ol> | | | 10. Map showing locations of ground-water wells in basic network | | # ILLUSTRATIONS, Continued | | | | Page | |----------|-----|-----------------------------------------------------------------------------------------|------| | Figure ] | 11. | Map showing locations of surface-water stations where water-quality data were collected | 30 | | | | TABLES | | | Table | 1. | North Dakota District offices | 7 | | | 2. | Cooperating agencies | 10 | | | 3. | | 23 | | | 4. | Water-quality data types | 29 | # WATER-RESOURCES ACTIVITIES OF THE U.S. GEOLOGICAL SURVEY IN NORTH DAKOTA, FISCAL YEAR 1986 | Compiled | by | Cathy | R. | Martin | |----------|----|-------|----|--------| | | | | | | #### INTRODUCTION The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report, which lists all ongoing water-resources projects in North Dakota in fiscal year 1986, was prepared to accomplish a part of the Water Resources Division mission. Information on each project includes objectives, approach, progress in 1985, plans for 1986, completed and planned report products, and the name of the project chief. # Origin of the U.S. Geological Survey The U.S. Geological Survey was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific 'classification of the public lands, and examination of the geological structure, mineral resources, and products of national domain.' An integral part of that original mission includes publishing and disseminating the earth-science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources. Since 1879, the research and factfinding role of the U.S. Geological Survey has grown and been modified to meet the changing needs of the Nation. As part of that evolution, the U.S. Geological Survey has become the Federal Government's largest earth-science research agency, the Nation's largest civilian mapmaking agency, the primary source of data on the Nation's surface— and ground—water resources, and the employer of the largest number of professional earth scientists. Today's programs are designed to meet the needs of a diverse group of users. Programs include: - --Conducting detailed assessments of the energy and mineral potential of the Nation's land and offshore areas; - --Investigating and issuing warnings of earthquakes, volcanic eruptions, landslides, and other geologic and hydrologic hazards; - -- Conducting research on the geologic structure of the Nation; - --Studying the geologic features, structure, processes, and history of the other planets of our solar system; - --Conducting topographic surveys of the Nation and preparing topographic and thematic maps and related cartographic products; - --Developing and producing digital cartographic data bases and products; - --Collecting data on a routine basis to determine the quantity, quality, and use of surface and ground water; - --Conducting water-resource appraisals in order to describe the consequences of alternative plans for developing land and water resources; - --Conducting research in hydraulics and hydrology and coordinating all Federal water-data acquisition; - --Using remotely sensed data to develop new cartographic, geologic, and hydrologic research techniques for natural resources planning and management; - --Providing earth-science information through an extensive publications program and a network of public access points. Along with its continuing commitment to meet the growing and changing earth-science needs of the Nation, the U.S. Geological Survey remains dedicated to its original mission to collect, analyze, interpret, publish, and disseminate information about the natural resources of the Nation--providing 'Earth Science in the Public Service.' ## Mission of the Water Resources Division The mission of the Water Resources Division is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This is accomplished, in large part, through cooperation with other Federal and non-Federal agencies, by: - --Collecting, on a systematic basis, data needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation's water resources; - --Conducting analytical and interpretative water-resource appraisals describing the occurrence, the availability, and the physical, chemical, and biological characteristics of surface and ground water; - --Conducting supportive basic and problem-oriented research in hydraulics, hydrology, and related fields of science to improve the scientific basis for investigations and measurement techniques and to understand hydrologic systems sufficiently well to quantitatively predict their response to stress, either natural or manmade; - --Disseminating the water data and the results of these investigations and research through reports, maps, computerized information services, and other forms of public releases; - --Coordinating the activities of Federal agencies in the acquisition of water data for streams, lakes, reservoirs, estuaries, and ground waters; --Providing scientific and technical assistance in hydrologic fields to other Federal, State, and local agencies, to licensees of the Federal Power Commission, and to international agencies on behalf of the Department of State. ## Sources of Information and Water Resources Division Publications The U.S. Geological Survey, as part of its original mission, publishes and disseminates earth-science information needed to understand, plan the use of, and manage the Nation's energy, land, mineral, and water resources. This information is provided through a network of public access points and an extensive publications program. Information on U.S. Geological Survey programs may be obtained from the Public Inquiries Office, U.S. Geological Survey, 169 Federal Building, 1961 Stout Street, Denver, CO 80294, or from U.S. Geological Survey Circular 900, "A Guide to Obtaining Information from the U.S. Geological Survey." ## National Water Data Exchange (NAWDEX) Program The Water Data Sources Directory (WDSD) is a computerized data base developed and maintained by the National Water Data Exchange (NAWDEX) Program Office. The directory contains information about organizations that collect, store, and disseminate water data. This information includes the type of each organization; the major orientation of water-data activities conducted by each organization; the names, addresses, and telephone numbers of offices within each organization from which water data may be obtained; the types of data available from each organization and the geographic locations where these data have been collected; and alternate sources of an organization's data. ## Water Data Storage and Retrieval (WATSTORE) System The national Water Data Storage and Retrieval (WATSTORE) system is a large-scale computerized storage and retrieval system used by the U.S. Geological Survey to store and disseminate water data. The WATSTORE system has data-processing, storage, and retrieval capabilities as well as the capability of providing computer-printed tables and graphs, statistical analyses of data, and digital plots. The WATSTORE system, which basically has remained unchanged for about 10 years, gradually is being replaced by a new water-data management system. The new system, when complete, will be called the National Water Information System (NWIS). A fundamental change from the WATSTORE system to the NWIS is to download water data from a central computer in Reston, Va., to minicomputers at district offices throughout the Nation. Data-management software is being enhanced to streamline data processing, allow for direct entry of data relayed via satellite, and permit processing of variable-interval data in addition to fixed-interval data. Results so far appear encouraging. Data management has become easier, and data can be processed more quickly than before. Improvements in timeliness of data availability are expected to occur in the near future as additional software is developed for the new system. All of the surface-water streamflow and stage data were downloaded to the North Dakota District computer during 1984. All 1984 water year data processing for surface-water data was done on the District computer. A new Automatic Data Processing System (ADAPS) is scheduled for delivery during 1986, but development has been delayed several times and the schedule may be revised again. In May 1985, the additional software was installed on the District computer and all ground-water site information and water levels were downloaded from Reston. The North Dakota District is acting as one of the test sites for the new ground-water software. Water-quality data will be downloaded to the District computer during 1986. Several utility programs, such as Log-Pearson Flood Frequency Analysis and Daily Values Duration, are scheduled to be available in the future. ### Water-Data Program Water-data stations at selected locations throughout the Nation are used by the U.S. Geological Survey to obtain records of stream discharge (flow) and stage (height), reservoir and lake storage, ground-water levels, well and spring discharge, and the quality of surface and ground water. These data provide a continuing record of the quantity and quality of the Nation's surface- and ground-water resources and thus provide the hydrologic information needed by Federal, State, and local agencies and the private sector for the development and management of land and water resources. All data collected are stored in the WATSTORE system and also are published, by water year, for each state in a publication series entitled "U.S. Geological Survey Water-Resources Data Reports" (see section "Water Resources Division Publications" for availability of these reports). Information about the water-data program can be obtained from the Assistant Chief Hydrologist for Operations or from the District Chief of the state of interest. #### Water Resources Division Publications Information on a wide variety of earth-science specialties is published in many forms, including the Federal book series and the map series. Book publications include a formal series—water—supply papers, professional papers, bulletins, circulars, techniques of water—resources investigations, and special reports—and an informal series—water—resources investigations reports, open—file reports, and administrative reports. Map publications include a formal series—hydrologic investigations atlases and miscellaneous investigations maps—and an informal series—water—resources investigations reports, open—file reports, and miscellaneous field studies maps. Formal series book publications are sold by the Text Products Section, Eastern Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304-4658; single copies of circulars still in print are available upon request from that address. Map publications pertaining to North Dakota are sold by the U.S. Geological Survey, Western Distribution Branch, Box 25286, Federal Center, Denver, CO 80225. Water-resources investigations reports and open-file reports pertaining to North Dakota are available for inspection at the U.S. Geological Survey, Water Resources Division, 821 East Interstate Avenue, Bismarck, ND 58501; information on their availability also may be obtained from the District Chief at that address. In addition, those reports having an alpha-numeric designation in parentheses at the end of the citation may be purchased as paper copy or microfiche from U.S. Geological Survey, Books and Open-File Reports, Federal Center, Bldg. 810, Box 25425, Denver, CO 80225--the alphanumeric designation is required when ordering from Books and Open-File Reports. The series of reports entitled "Water-Resources Data for (State) for (Year)," describing surface water, ground water, and water quality in each state, may be purchased from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161, but can be inspected in U.S. Geological Survey libraries and in Water Resources Division district offices in the region of the report. New reports are announced monthly in "New Publications of the Geological Survey," subscriptions to which are available upon request from the U.S. Geological Survey, 582 National Center, Reston, VA 22092. Information on North Dakota District publications for 1984, 1985, and 1986 is given in supplement 1. #### NORTH DAKOTA DISTRICT The North Dakota District is 1 of 42 districts of the U.S. Geological Survey, Water Resources Division. The District, which is defined by the State boundaries, has offices in Bismarck, Dickinson, and Grand Forks (table 1). District organization is shown in figure 1. # Funding Funds to support water-resources activities of the North Dakota District are derived from three principal sources: - (1) Federal Program—Funds are appropriated by Congress and are specifically identified. In fiscal year 1986, Federal funding for North Dakota District program activities is \$387,760. - (2) Federal-State Cooperative Program--Federal funds are appropriated by Congress and used to match those furnished by State and other tax-supported agencies on a 50-50 basis. These funds are used for a variety of hydrologic data-collection activities and water-resources investigations in which the U.S. Geological Survey represents the national interest and the cooperating agencies represent State and local interests. In fiscal year 1986, Federal-State Cooperative funding for the North Dakota District is \$1,377,710. - (3) Other Federal Agencies (OFA) Program--Funds are transferred to the U.S. Geological Survey as reimbursement for work performed at the request of another Federal agency. In fiscal year 1986, OFA funding is \$1,169,295. The total budget for fiscal year 1986 is \$2,934,765. The percentage of funding from each principal source is shown in figure 2. Agencies cooperating in water-resources investigations during fiscal year 1986 are given in table 2. The broad categories of investigations are research projects, areal appraisals and interpretative studies, collection of hydrologic data, and administrative projects. The percentage of investigations for each category for fiscal year 1986 is shown in figure 3. # Summary of Major Water Problems Water is a subject of major concern to the State of North Dakota. Testimonial to this is the fact that the North Dakota State Water Commission, the chief State water agency, has been one of the largest State agencies over the years and has continued to receive funding from the State Legislature for water-resources investigations. The North Dakota State Water Commission has regulatory authority over all water use within the State and carries out a program of water-related activities with Federal, other State, and local agencies. Water problems are mostly related to natural conditions of geology and climate but are socioeconomic as well. They are discussed herein under the broad headings of quantity and quality. -" Table 1 -- North Dakota District offices | Office | Telephone number | Address | | | |-----------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--| | District office | (701) 255-4011<br>Extensions 601, 610<br>FTS 783-4601 | U.S. Geological Survey<br>821 East Interstate<br>Bismarck, ND 58501 | | | | Dickinson field<br>headquarters | (701) 225-2051<br>FTS 783-5771, ask<br>for 225-2051 | U.S. Geological Survey<br>Water Resources Division<br>669 12th Street SW<br>Dickinson, ND 58601 | | | | Grand Forks field<br>headquarters | (701) 775-7221<br>FTS 783-0325 | U.S. Geological Survey<br>Water Resources Division<br>P.O. Box 1437<br>Grand Forks, ND 58206-1437 | | | # NORTH DAKOTA DISTRICT ORGANIZATION # L. Grady Moore, District Chief Figure 1.—North Dakota District organizational structure. Figure 2.—Percentage of funding from principal sources for fiscal year 1986. ## Table 2.--Cooperating agencies ### Federal agencies U.S. Department of Agriculture Soil Conservation Service U.S. Department of the Army Corps of Engineers St. Paul District Omaha District U.S. Department of the Interior Bureau of Indian Affairs Bureau of Land Management Bureau of Reclamation Fish and Wildlife Service Geological Survey National Mapping Division National Park Service U.S. Department of State International Joint Commission Waterways Treaty U.S. Environmental Protection Agency ### State agencies North Dakota Geological Survey North Dakota Public Service Commission North Dakota State Department of Health North Dakota State University North Dakota State Water Commission ## Local agencies City of Dickinson Lower Heart Water Resource District Oliver County Board of Commissioners Figure 3.—Percentage of investigations for fiscal year 1986. #### Quantity Average annual precipitation ranges from 14 inches in the northwestern part of the State to about 21 inches in the southeastern part. The areal distribution of average annual precipitation based on data for 1951-80 is shown in figure 4. Precipitation in North Dakota is erratic. No regular cyclic pattern has been demonstrated, but periods of water surplus or water deficiency generally extend over several years. Two major river systems, the Missouri River system and the Hudson Bay system, drain North Dakota. The Missouri River system includes the Missouri River drainage basin and the James River drainage basin. The Hudson Bay system includes the Souris River drainage basin, the Red River drainage basin, and the noncontributing Devils Lake drainage basin. These five major drainage basins are shown in figure 5. Runoff is extremely variable, seasonally and annually as well as areally. A large part of runoff occurs in the spring as a result of snowmelt. Flooding is common during periods of water surplus. All major rivers in the State are subject to flooding; but for some rivers, such as the Missouri, the risks are low because their flows are regulated by dams. The Red River valley is particularly vulnerable to flooding because of extremely flat topography and small channel capacity. Since 1950, 10 serious floods have occurred along the main stem of the Red River in North Dakota and Minnesota. The Souris River, which enters northwestern North Dakota from Canada and eventually flows back into Canada from North Dakota, also is flood prone. Since 1950, seven serious floods have occurred along the main stem of the Souris River. Studies indicate that the natural tendencies toward flooding in the Red River valley and along the Souris River are being affected by man's activities. However, these effects are very difficult to quantify because of insufficient long-range records. Large tracts of formerly noncontributing wetlands in the Red River valley, both in North Dakota and Minnesota, have been drained for agricultural purposes. Drainage of the wetlands has added to the area that contributes runoff to the Red River. Also, a large number of individual dike systems have been built for flood protection. These systems tend to aggravate flood conditions in that they locally cause higher-than-normal flood crests. Wetland drainage affects water resources in other ways. Wetlands constitute valuable habitat for waterfowl and other wildlife. North Dakota normally produces more waterfowl than any other state in the contiguous United States. Some of the deeper lakes are used for stock-watering purposes, particularly in the Coteau du Missouri. Also, wetlands may be important sources of ground-water recharge. To date, little quantitative work has been done in North Dakota to quantify areas of ground-water recharge. During the 1985 fiscal year, however, a cooperative project with the North Dakota State Water Commission was begun to address snowmelt recharge to shallow aguifers. Figure 4.—Average annual precipitation (1951-80), in inches. (John W. Enz, North Dakota State University, written commun., 1984). Figure 5.—Locations of major drainage basins of North Dakota. Generally, the first problems that arise during periods of water deficiency are associated with inadequate streamflow. Municipalities dependent on surface-water sources for public-water supply may have to curtail water use. Ironically, these municipalities may include cities that were damaged by flood waters only a few years earlier. Such has been the case with the city of Fargo on the Red River and the city of Minot on the Souris River. Irrigators may be forced to reduce their irrigated acreages and reallocate part of their resources into dryland farming. This reduction, in turn, may affect cattle-feeder operations, beef prices, etc. Fish and wildlife resources are severely impacted during prolonged periods of water deficiency. Severely depleted streams and lakes result in fish kills, some to the point where complete restocking is necessary. Wetlands dry up during these periods, greatly reducing the production of waterfowl and other wildlife that use the wetlands for habitat. Water levels in shallow aquifers, most of which occur in glacial deposits (fig. 6), decline during periods of water deficiency because evapotranspiration losses and other discharges exceed recharge. Also, as surface-water sources are depleted, more dependency is placed on ground water, and withdrawals increase. Irrigation, which in North Dakota is supplemental to rainfall, increases during periods of water deficiency, placing added stresses on aquifers. In the case of shallow aquifers, the additional water pumped may be salvage derived after evapotranspiration losses. However, water from deeper, confined aquifers is pumped from storage that is not replaced within a comparable timeframe. Future ground-water studies in the State will need to focus on both types of ground-water occurrence. Information is needed on rates of evapotranspiration from, and rates of recharge to, shallow aquifers as well as sources and rates of recharge (such as leakage from confining beds) to the deeper aquifers. #### Quality High salinity, particularly in the western part of North Dakota, is the most serious water-quality problem in the State. Except for the Missouri River and its reservoirs, salinity of both surface- and ground-water sources in western North Dakota commonly exceeds 1,000 mg/L (fig. 7) and at times and in places exceeds 2,000 mg/L. Salinity of the Missouri River and its reservoirs generally is near 500 mg/L. High salinity limits use of the water resources in the western part of the State. Generally, salinity and sodium hazards limit or prohibit use of the water for irrigation. Also, high salinity as well as high concentrations of certain chemical constituents (fig. 8) limit the desirability of the water for domestic use. Expanded energy development poses a potential threat to water quality in western North Dakota. Leachates from lignite mine spoil piles are several times as saline as water in the undisturbed environment. In addition, because the lignite has a high water content, it cannot economically be hauled great distances for commercial use. Consequently, it usually is utilized (burned) within the State. Preliminary studies indicate the ash contains significant quantities of hazardous materials such as arsenic, molybdenum, selenium, and phenols that under certain conditions could be released into the environment. Figure 6.—Locations of major glacial-drift aquifers. (Modified from North Dakota State Water Commission, 1982. Map showing glacial-drift aquifers in North Dakota and estimated potential yields. North Dakota State Water Commission, scale 1:500,000, 1 sheet). Figure 7.—Mean dissolved-solids concentration of the principal rivers of North Dakota. Width of river indicates mean dissolved-solids concentration in milligrams per liter 1,900 Figure 8.—Prevalent principal dissolved constituents in surface waters. SODIUM SULFATE Certain lignite deposits in western North Dakota contain uranium in contents as great as 2.5 percent. During the 1950's and 1960's, a process was developed for further concentrating the uranium through *in situ* burning. Although mining is no longer active, there are at least nine unreclaimed uranium mines, ranging in size from 40 to 200 acres, that the U.S. Environmental Protection Agency has designated potential hazardous-waste sites. Few hydrologic data are available for these sites, and additional work is being undertaken to determine the consequences on the hydrologic system in the area, if any, due to the mining and processing activities. Extensive oil and gas exploration and extraction have continued in North Dakota since the first oil discovery in 1951. There are two principal consequences of these activities on the hydrologic system: (1) Air emissions of acid-forming sulfur compounds due to flaring of gas and leakage of sour gas from oil wells and (2) underground migration of salts and hazardous wastes from drilling-mud pits and brine-disposal pits. The practice of brine disposal in pits has been discontinued since 1972 when legislation was put into effect requiring underground injection to deep-lying formations. Some work has been done by State agencies to investigate the extent of these consequences, including at least two projects conducted by the North Dakota Water Resources Research Institute. These studies will add to the knowledge of the consequences on the hydrologic system due to oil and gas exploration and extraction. Another byproduct of expanded energy development may be acid rain and other deteriorations of precipitation quality. Since 1980, precipitation in the State has been characterized by mean annual volume-weighted pH values less than 4.8 and by elevated concentrations of mercury, selenium, and molybdenum relative to regional soils. Most of the State is characterized by calcareous soils and alkaline waters that offer some buffering protection against acidification. However, wetlands situated on noncalcareous glacial till in the Coteau du Missouri and Turtle Mountains may be vulnerable to acidification. Monitoring of water quality in potholes in both areas suggests enrichment from snowmelt in trace metals such as mercury, selenium, and molybdenum and a slight lowering in pH of about 0.7 to 1.6 units. Examination of available data indicates that precipitation acidity may increase (1) surface-water alkalinity and (2) nutrient loading due to increased dissolution of carbonate minerals and nutrients in bottom materials. These increases can accelerate eutrophication of some small lakes. ### DATA-COLLECTION PROGRAM The U.S. Geological Survey continually records stage, discharge, quality of water, sediment concentrations, and ground-water levels at selected sites throughout North Dakota. Some of the sites are operated on a long-term basis to sample trends in the gross water supply. Others are operated for short periods of time for correlation with long-term sites to extend areal coverage or for specific investigations. This information is published annually in water-data reports and stored in computer files for retrieval and processing. # Surface-Water Stations PROJECT NUMBER: ND 00-001. LOCATION: Statewide. PERIOD OF PROJECT: Continuous. PROJECT CHIEF: Russell E. Harkness. STATEWIDE COOPERATING AGENCIES: (1) City of Dickinson; (2) Lower Heart Water Resource District; (3) North Dakota Public Service Commission; (4) North Dakota State Water Commission; (5) Oliver County Board of Commissioners; (6) U.S. Department of Agriculture, Soil Conservation Service; (7) U.S. Department of the Army, Corps of Engineers; (8) U.S. Department of the Interior, Bureau of Reclamation; (9) U.S. Department of the Interior, Fish and Wildlife Service; (10) U.S. Department of State, International Joint Commission, Waterways Treaty; and (11) other Federal agencies of the U.S. Department of the Interior for the development of the Missouri River basin. PROBLEM: Operation of existing water projects and planning future works requires the availability of accurate and unbiased streamflow and water-level data. The information must be available in a timely manner in order to assure efficient and effective operation of existing projects. The data also must be available over a wide range of space and time in order to provide statistically accurate projections used for planning. OBJECTIVES: Objectives are (1) to collect surface-water data needed for assessment of water resources, operation of reservoirs or industries, forecasting, disposal of wastes and pollution controls, discharge data to accompany water-quality measurements, compact and legal requirements, and research or special studies and (2) to collect data necessary for analytical studies at specific locations to define statistical distributions of, and trends in, the occurrence of water in streams, lakes, etc., for use in planning and design. APPROACH: Standard methods of data collection will be used as described in the U.S. Geological Survey techniques of water-resources investigations report series. Partial-record gaging will be used instead of complete-record gaging where it serves the required purpose. Discharge and stage data will be obtained for the stations shown in figure 9. A station-classification summary is given in table 3. Figure 9.-Locations of lake, crest-stage, and stream-gaging stations. Table 3.--Station-classification summary | Station classification | | | |--------------------------------|----|-----| | Stream stations | | 134 | | Continuous record: | | | | Discharge and stage | 82 | | | Stage only | 18 | | | Stage and peak flow | 3 | | | Partial record: | | | | Peak (maximum) flow only | 8 | | | Discharge and stage (seasonal) | 23 | | | Lake and reservoir stations | | 15 | | Stage and contents | 13 | | | Stage only | 2 | | | Total | | 149 | PROGRESS IN 1985: All network data were collected on schedule and the water-year records were prepared for publication. Four seasonal streamflow gages were converted to crest-stage gages. Responsibility for the operation of one lake gage was turned over to another agency, and a new lake gage was installed. Data collection at a discontinued streamflow-gaging station was resumed. Three new streamflow gages were installed during the summer and an observer was hired to make daily observations for two sites. Extensive repairs were made to channel controls at two streamflow stations, and a contract for purchase of materials to rebuild the control at another streamflow station was awarded. PLANS FOR 1986: Four new seasonal stations, one new continuous-streamflow station, and three new crest-stage gages will be operated. A contract will be awarded to complete replacement of the channel control on one streamflow station. Repair or removal of cableways will continue. Safety inspection for mercury contamination at stations having mercury manometers will be completed. REPORT PRODUCTS: U.S. Geological Survey, 1985, Water-resources data, North Dakota, Water year 1984: U.S. Geological Survey Water-Data Report ND-84-1, 358 p. U.S. Geological Survey, Water-resources data, North Dakota, Water year 1985 (planned). # Ground-Water Stations PROJECT NUMBER: ND 00-002. LOCATION: Statewide. PERIOD OF PROJECT: Continuous. PROJECT CHIEF: Russell E. Harkness. STATEWIDE COOPERATING AGENCIES: (1) North Dakota Public Service Commission; (2) North Dakota State Water Commission; and (3) U.S. Department of the Army, Corps of Engineers. <u>PROBLEM:</u> Planning for management and development of ground-water resources requires extensive knowledge of the occurrence and availability of ground water and use of and impacts on the ground-water system. OBJECTIVES: Objectives are twofold. The first is to collect water-level data sufficient to provide a minimum long-term data base. The data base is used for continued observation of the impacts of climatic variation and man's activities on the ground-water system. A statewide data base is essential for efficient resource management. The second objective is to provide a data base against which the short-term records acquired in areal studies can be analyzed. APPROACH: Evaluation of regional geology allows a general definition of aquifer systems and their boundary conditions. Within this framework and with some knowledge of (1) changes in the ground-water system in time and space and (2) the hydrologic properties of the aquifers, subjective decisions can be made in upgrading the statewide ground-water observation-well network. A network of wells has been established and currently consists of 383 wells that are measured quarterly or more frequently and 433 wells that are measured annually. This network can be refined as data become available and detailed areal studies of the ground-water system better define the aquifers, their properties, and the stresses to which they are subjected. PROGRESS IN 1985: All network data were collected on schedule. The data were tabulated and stored in District files and in the WATSTORE system. Only the data from a basic network of wells (fig. 10) were published. Initial field application and testing of the ground-water software for the NWIS was conducted on the District computer. PLANS FOR 1986: Plans are to continue to operate the observation-well network. Figure 10.-Locations of ground-water observation wells in basic network. <u>REPORT PRODUCTS:</u> U.S. Geological Survey, 1977, Ground-water levels in the United States, 1972-74, north-central states: U.S. Geological Survey Water-Supply Paper 2163, p. 57-61. Ground-water data for the basic network have been and will continue to be published in the annual report series, "U.S. Geological Survey, Water-resources data, North Dakota." # Water-Quality Stations PROJECT NUMBER: ND 00-003. LOCATION: Statewide. PERIOD OF PROJECT: Continuous. STATEWIDE PROJECT CHIEFS: Robert L. Houghton (1985) and Lawrence I. Briel (1986). COOPERATING AGENCIES: (1) North Dakota Public Service Commission; (2) North Dakota State Water Commission; (3) U.S. Department of the Army, Corps of Engineers; (4) U.S. Department of the Interior, Bureau of Reclamation; and (5) U.S. Department of the Interior, Fish and Wildlife Service. PROBLEM: Water-resources planning and water-quality assessment require a nationwide base level of relatively standardized information. For proper planning and assessment of the water resources, the chemical and physical qualities of surface water and ground water must be defined and monitored. OBJECTIVES: Objectives are (1) to provide a national bank of water-quality data for broad Federal and State planning and action programs and (2) to provide data for Federal and State management of interstate and international waters. APPROACH: A network of water-quality stations will be operated to provide average chemical concentrations, loads, and time trends as required by planning and management agencies. PROGRESS IN 1985: Water-quality data were obtained at 110 surface-water stations and at 3 other surface-water sites where discharge and stage are not measured routinely. Nine of the stations also are part of a U.S. Geological Survey nationwide network known as the National Stream Quality Accounting Network (NASQAN), data from which is used to define nationwide trends in water quality. The types of data obtained at surface-water stations are given in table 4. Inasmuch as several types of data may be determined at a particular station and not all types of data were determined at each station, the numbers given in table 4 will not equal the total number of stations given earlier. All surface-water stations where water-quality data were collected are shown in figure 11. Water-quality data were collected at 76 wells in 1985. Physical data collected include water temperature, specific conductance, and pH. Water samples collected are analyzed primarily for inorganic constituents. The number of wells and the locations sampled vary from year to year. Wells and locations sampled this year are shown in figure 10. <u>PLANS FOR 1986:</u> The network will continue to operate with a few cooperator-requested modifications. Three new water-quality stations will be added in the Devils Lake basin. The suite of pesticides and trace elements analyzed from selected stations on the James River will be expanded. #### Table 4.--Water-quality data types | Data type | Number of stations | |------------------------|--------------------| | Physical data: | | | Water temperature | - 113 | | Specific conductance | - 113 | | рн | - 113 | | Chemical data: | | | Inorganic constituents | - 113 | | Organic constituents | <b>-</b> 5 | | Pesticides | 2 | | Radiochemical data | - 6 | | Microbiological data | - 11 | | Precipitation quality | - 2 | | | | Figure 11.—Locations of surface-water stations where water-quality data were collected. REPORT PRODUCTS: U.S. Geological Survey, 1985, Water-resources data, North Dakota, Water year 1984: U.S. Geological Survey Water-Data Report ND-84-1, 358 p. U.S. Geological Survey, Water-resources data, North Dakota, Water year 1985 (planned). #### Sediment Stations PROJECT NUMBER: ND 00-004. LOCATION: Statewide. PERIOD OF PROJECT: Continuous. PROJECT CHIEF: Russell E. Harkness. STATEWIDE COOPERATING AGENCIES: (1) North Dakota Public Service Commission; (2) U.S. Department of the Interior, Bureau of Reclamation; (3) U.S. Department of the Interior, Fish and Wildlife Service; and (4) other Federal agencies of the U.S. Department of the Interior for the development of the Missouri River basin. PROBLEM: Water-resources planning for intrastate, as well as interstate, waters requires a standardized data base containing sediment transport information. The information must be accurate, unbiased, and available to the user. OBJECTIVES: Objectives are (1) to provide a national bank of sediment data for use in broad Federal and State planning and action programs and (2) to provide data for Federal management of interstate and international waters. <u>APPROACH:</u> A network of sediment stations will be established and operated to provide spatial and temporal averages and trends of sediment concentration, sediment discharge, and particle size of sediment being transported by rivers and streams. PROGRESS IN 1985: Data were collected and analyzed for 19 partial-record stations (fig. 11). Records were being prepared for publication. PLANS FOR 1986: Plans are to continue to operate the network. As part of the U.S. Fish and Wildlife Refuge Monitoring Program, an observer will be hired to collect daily samples at six gage sites in the Souris River basin. REPORT PRODUCTS: U.S. Geological Survey, 1985, Water-resources data, North Dakota, Water year 1984: U.S. Geological Survey Water-Data Report ND-84-1, 358 p. U.S. Geological Survey, Water-resources data, North Dakota, Water year 1985 (planned). #### National Trends Network for Atmospheric Deposition PROJECT NUMBER: ND 00-005. LOCATION: Statewide. PERIOD OF PROJECT: Continuous since November 1983. STATEWIDE PROJECT CHIEF: Robert L. Houghton. <u>PROBLEM:</u> In order to determine atmospheric fluxes within the hydrologic system and man's influences on these fluxes, it is necessary to establish and operate a nationwide, long-term monitoring network for atmospheric deposition. OBJECTIVES: Objectives are (1) to establish and operate a nationwide, long-term monitoring network to detect and measure levels of atmospheric deposition and (2) to determine variations in atmospheric deposition that occurs on a week-to-week basis by collection of wet- and dry-deposition products for analysis of elements and constituents that can contribute to the chemical composition of surface waters. <u>APPROACH:</u> Monitoring stations are to be set up at Woodworth and Icelandic State Park as part of the National Trends Network (NTN). Stations will be maintained, on-site measurements made, samples processed, and samples submitted to the analytical laboratory. Data will be stored in the NWIS and verified. Results will be reported to the national program coordinator. <u>PROGRESS IN 1985</u>: Two atmospheric deposition stations were operated. Records for the second year's precipitation and quality were being prepared for publication. Digitally recording rain gages were installed at each station. The field operator at Icelandic State Park received training from the National Atmospheric Deposition Program. <u>PLANS FOR 1986</u>: Stations will continue to be monitored. Data will be stored in NWIS files. Event precipitation data will be published in addition to weekly total precipitation. REPORT PRODUCTS: U.S. Geological Survey, 1985, Water-resources data, North Dakota, Water year 1984: U.S. Geological Survey Water-Data Report ND-84-1, 358 p. U.S. Geological Survey, Water-resources data, North Dakota, Water year 1985 (planned). #### Water-Use Data Acquisition and Dissemination Program PROJECT NUMBER: ND 00-007. LOCATION: Statewide. PERIOD OF PROJECT: Continuous. STATEWIDE PROJECT CHIEFS: Edwin A. Wesolowski, U.S. Geological Survey, and Christopher D. Bader, North Dakota State Water Commission. COOPERATING AGENCY: North Dakota State Water Commission. PROBLEM: The water resources of North Dakota are being used more extensively with each succeeding year. Competition among users for available water resources in certain areas of the State has increased. In order to manage the development of the resources and to project future trends, planners and managers must be aware of existing patterns and quantity of use. OBJECTIVES: This study will establish a program to provide water-use information for the optimum utilization and management of the State's water resources. The program will collect, store, and disseminate water-use data to complement data on availability and quality of the State's water resources. APPROACH: Withdrawals can be evaluated quantitatively because they require removal of the water from the ground, stream, lake, or reservoir. The categories applicable for obtaining data on total withdrawals are irrigation, municipal use, industrial self-supply, agricultural (nonirrigation), dewatering, and injection. Two nonwithdrawal uses that need to be considered are recreation and preservation. Both of these categories require collection of qualitative data that would be useful in water-use analysis. PROGRESS IN 1985: After reformatting data from the North Dakota State Water Commission "master permit file" via a conversion program, data from 1965 to 1982 were entered into the District computer system, creating the State Water Use Data System (SWUDS). The system is operational, and data retrievals are possible. The SWUDS software was updated and is operational. PLANS FOR 1986: The North Dakota State Water Commission will continue to update and maintain the detailed water-use data base. The 1985 water-use data will be compiled by county and hydrologic unit for 10 water-use categories, then transferred to National Headquarters for inclusion in the publication "Estimated Use of Water in the United States in 1985." In order to improve data collection, various techniques for obtaining accurate discharge information will be tested. Verification also will be completed to assure that North Dakota State Water Commission water-use data that was reformatted and stored in the SWUDS conforms to SWUDS coding format. <u>REPORT PRODUCTS:</u> Patch, J.C., and Haffield, N.D., 1982, Estimated use of water for North Dakota, 1982: North Dakota State Water Commission Information Series No. 33 (map). Smith, M.L., and Harkness, R.E., 1982, Water use in North Dakota, 1980: North Dakota State Water Commission Information Series No. 31 (map). ## Evaluation of the Streamflow Collection Network for North Dakota PROJECT NUMBER: ND 90093. LOCATION: Statewide. PERIOD OF PROJECT: October 1983 to September 1986. STATEWIDE PROJECT CHIEF: Gerald L. Ryan. <u>PROBLEM</u>: Changes in the streamflow data-collection network often are made to satisfy a cooperating agency's needs. Also, changes or cutbacks are necessary because of restraints or reallocation of funds and manpower and increased costs of operation. Collection of selective data to meet immediate needs often does not meet the requirements of a long-term data-collection network. OBJECTIVES: The purpose of this study is to make a systematic review of the network to determine how best to serve the immediate and long-term Federal and State needs. Objectives are (1) to define the purpose of the data collection at each site, (2) to make a comparative merit evaluation for all sites, (3) to identify alternative means of supplying required data and changes that could be made in the network to effect savings in funds and manpower, and (4) to identify requirements for periodic or continuous network evaluation. APPROACH: The study will be conducted in two phases. Phase 1 will be to meet objectives 1 and 2. Phase 2 will be to meet objectives 3 and 4. A questionnaire will be prepared and distributed to cooperators and other interested agencies to define interest in individual stations. Data from the questionnaire will be compiled and analyzed to develop a relative merit for each existing station as well as any that might be proposed. Phase 2 will consist of analyzing data-collection activities with varying funding levels and manpower costs, such as the "Kalman Filter Cost Effective Resource Allocation (K-CERA)." PROGRESS IN 1985: Results of phase I were published. Alternate ways to supply data requirements were identified and tested. PLANS FOR 1986: Changes that could be made in the network to effect savings in funds and manpower will be identified. Statistical evaluation of the data operation will be completed. Publication of the report containing the results of the second phase of the study is planned. REPORT PRODUCTS: Ryan, G.L., 1985, Data uses and funding of the streamflow-gaging program in North Dakota: U.S. Geological Survey Open-File Report 85-349, 29 p. Ryan, G.L., Cost effectiveness of the stream-gaging program in North Dakota (planned). #### COUNTY GROUND-WATER STUDIES The U.S. Geological Survey has for many years had a continuing program in cooperation with State and other Federal agencies to study the ground-water resources of the counties in North Dakota. The studies are connected under county or multicounty boundaries. In 1985, the last county ground-water report was published. These county studies have provided a valuable resource on which to build other studies and have helped reduce the time and cost of initial reconnaissance-level activities. #### Ground-Water Resources of McKenzie County, North Dakota PROJECT NUMBER: ND 79-086. LOCATION: Western North Dakota. PERIOD OF PROJECT: October 1978 to September 1983. PROJECT CHIEF: Mack G. Croft (retired). COOPERATING AGENCIES: (1) North Dakota Geological Survey; (2) North Dakota State Water Commission; (3) U.S. Department of the Interior, Bureau of Land Management; and (4) U.S. Department of the Interior, National Park Service. PROBLEM: To plan the safe and intelligent development of water supplies for farms, industry, and cities, information was needed on the sources of recharge and discharge, quantities of water in storage, potential yield, and chemical quality of water in aquifers in McKenzie County. OBJECTIVES: The purpose of this study was to determine the quantity and quality of ground water available for municipal, domestic, livestock, industrial, and irrigation uses. Objectives were (1) to determine the location, extent, and nature of the major aquifers and confining beds; (2) to evaluate the occurrence and movement of ground water, including the sources of recharge and discharge; (3) to estimate the quantities of water stored in the aquifers; (4) to estimate the potential yields to wells penetrating the major aquifers; and (5) to determine the chemical quality of the ground water. APPROACH: This was a relatively comprehensive study of the ground-water resources. The methods of study were categorized by the following activities: (1) Project planning, (2) examination of water records, (3) geologic mapping, (4) test drilling, (5) chemical quality of water sampling and analyses, (6) aquifer tests and special studies, (7) data compilation and analysis, and (8) report preparation. <u>PROGRESS IN 1985</u>: The final interpretative report of the ground-water resources of McKenzie County was published, and project activities were terminated. PLANS FOR 1986: The project is complete; no further activities are planned in 1986. REPORT PRODUCTS: Carlson, C.G., 1985, Geology of McKenzie County, North Dakota: North Dakota State Water Commission County Ground-Water Studies 37, part I, and North Dakota Geological Survey Bulletin 80, part I, 48 p. Croft, M.G., 1985, Ground-water data for McKenzie County, North Dakota: North Dakota State Water Commission County Ground-Water Studies 37, part II, and North Dakota Geological Survey Bulletin 80, part II, 455 p. Croft, M.G., 1985, Ground-water resources of McKenzie County, North Dakota: North Dakota State Water Commission County Ground-Water Studies 37, part III, and North Dakota Geological Survey Bulletin 80, part III, 57 p. #### REGIONAL STUDIES In anticipation of water demands on a scale not limited by political boundaries or local problems, the U.S. Geological Survey is conducting studies of regional hydrologic systems. Some of these studies are in cooperation with other agencies. The studies are directed toward definition of the systems and prediction of the effects of stresses that could be imposed by present and future management plans. ## Hydrology of Area 47, Northern Great Plains Coal Province, North Dakota PROJECT NUMBER: ND 81-098. LOCATION: Southwestern North Dakota. PERIOD OF PROJECT: March 1981 to September 1982. PROJECT CHIEF: Orlo A. Crosby (retired). PROBLEM: Because of rapid development of energy resources (i.e., coal and oil), water availability and protection of water resources are significant problems in coal area 47, a subarea of the northern Great Plains coal province. Expected energy development included surface mining, powerplants, and coal conversion plants. Mining companies are required by law to analyze the hydrologic effects of proposed activities and to take appropriate measures to minimize adverse effects. There was, therefore, a need for comprehensive and easily understood information about the water resources in coal area 47. OBJECTIVES: The purpose of this study was to describe the hydrology of area 47 in a format readily usable by the coal-mining industry, regulatory agencies, interest groups (such as environmental organizations), and the general public. Objectives were to present (1) a description of the area in a hydrologic framework, (2) a quantitative assessment of the occurrence and availability of water, (3) an assessment of the present quality of available water, and (4) an identification of current and planned utilization of water. APPROACH: Existing data were utilized to establish an information framework for the study area. All available data were used to prepare graphs, maps, and text to fulfill the objectives of the study. The report was prepared in accordance with the Sequential Thematic Organization of Publications (STOP) format. PROGRESS IN 1985: The report has been completed, but publication was delayed during typesetting. PLANS FOR 1986: Publication of the report is anticipated. REPORT PRODUCTS: Crosby, O.A., and Klausing, R.L., Hydrology of area 47, northern Great Plains and Rocky Mountain coal provinces; North Dakota, South Dakota, and Montana: U.S. Geological Survey Open-File Report 83-221, 150 p. (in press). # Changes in Precipitation Chemistry Resulting from Coal-Fired Energy Conversion Plants in North Dakota BER: ND 82-106/108. LOCATION: Statewide. PROJECT NUMBER: PERIOD OF PROJECT: October 1981 to September 1986. STATEWIDE PROJECT CHIEFS: Robert L. Houghton and Lawrence I. Briel. COOPERATING AGENCY: North Dakota State Department of Health. PROBLEM: Little data have been collected on precipitation quality in relatively pristine areas of the country not presently receiving large pollutant loads from the atmosphere. Of the western energy-producing states, North Dakota may be vulnerable to serious environmental damage in the future. The State has experienced an expansion of population, lignite mining, petroleum and synfuel production, and energy production by coal-fired powerplants. With the known energy-development projects proposed for operation within North Dakota by 1985, the total statewide emissions of sulfur and nitrogen oxides are expected to exceed 1,300 tons per day. Considering additional input from increased emissions in upwind regions of Montana and Saskatchewan, the potential also exists for an adverse or episodic acid rain problem on a regional scale in North Dakota by the mid-1980's. OBJECTIVES: Detailed geochemical investigations will be made (1) to determine baseline concentrations of certain elements in aerosol, precipitation, soil, and water prior to large-scale development of fuel resources; (2) to examine this baseline data for evidence of current influences by coalfired generating facilities; (3) to determine the variation in composition of atmospheric precipitation both temporally and spatially; (4) to identify and evaluate mechanisms by which elements transfer within the ecosystem among atmosphere, water, and soil components; and (5) to determine the impact of changes in precipitation chemistry on surface— and ground—water quality. The results of these studies should provide the necessary basis (1) to develop a conceptual model of the processes controlling the composition of atmospheric deposition and (2) to follow with a mathematical model for quantitative predictions of future changes in precipitation quality and network design required to determine long-term changes in the quality of precipitation. Representative receptor locations will be chosen within and downwind of the energy-development area in western North Dakota. Meteorological data and chemical data for wet and dry deposition collected at each receptor location will be evaluated statistically to determine the covariance of properties measured. Parameters indicative of differing types of energy development will be identified and monitored on an event or weekly Stable isotopes will be monitored periodically to determine the proportion of acidic substances in precipitation contributed by biogenic processes and fossil-fuel combustion. A mass-balance flux-type model will be used to evaluate the effects of changing precipitation composition on the hydrologic system. An atmospheric model developed by the North Dakota State Department of Health may be used to evaluate the effects of powerplant emissions on precipitation quality and to predict future impacts. composition of streams and lakes in the vicinity of precipitation stations will be monitored to measure the effects of precipitation chemistry on local surface waters. If impacts of degraded atmospheric deposition are recognized in local surface waters, regional surface- and ground-water quality data collected as part of the statewide network will be evaluated to determine the extent of these impacts. PROGRESS IN 1985: The quality of water in potholes adjacent to precipitation-collection stations at Canfield Lake and Woodworth and a smallbasin headwater stream near Dunn Center was determined monthly to determine the hydrologic consequences of changing precipitation chemistry. During snowmelt, these surface-water quality determinations were supplemented by daily samplings and snow cores to identify snowmelt enrichments in the volatile trace metals. An area of apparent acidification in the Turtle Mountains of northern North Dakota also was monitored on a monthly basis. The U.S. Geological Survey and the North Dakota State Department of Health continued operation on a precipitation-chemistry station at Canfield Lake and established complementary air-quality instrumentation at the site. Additionally, the North Dakota State Department of Health continued to operate stations at Dunn Center and Woodworth. This network was supplemented by two NTN stations operated by the U.S. Geological Survey, a third NTN station operated by the U.S. Park Service, and 10 new weekly stations geographically distributed across North Dakota and operated by the North Dakota State Department of Health. PLANS FOR 1986: Monitoring of pothole quality on a monthly basis will be continued in Canfield Lake Pothole No. 1 and Woodworth Pothole No. 14. These samplings will be supplemented by a daily monitoring during initial snowmelt and snow cores. Canfield Lake precipitation-collection station will be operated on an event basis. A within-event precipitation pH, specific conductance, and temperature monitor also will be operated at Canfield Lake between April and October. An improved automated digital meteorological monitoring system has been installed at Canfield Lake and hopefully will increase the accuracy of meteorological data collected. <u>REPORT PRODUCTS</u>: Houghton, R.L., 1983, Acidification of North Dakota surface water: Proceedings, Symposium on Acid Rain in Western Canadian Provinces, Regina, Saskatchewan, May 26-27, 1983, p. 16. Houghton, R.L., 1983, Composition of atmospheric deposition in western North Dakota: Proceedings, 75th Annual Meeting of the North Dakota Academy of Science, Grand Forks, N. Dak., April 28-30, 1983, p. 59. Houghton, R.L., 1984, Differences in composition of wet fall collected on weekly and event basis in North Dakota: National Atmospheric Deposition Program Technical Committee Meeting, Abstracts of Papers, October 31-November 2, 1984, p. 11-12. Houghton, R.L., Berger, M.E., Zander, N., and Dutchuk, S.K., 1984, Atmospheric deposition: Sample handling, storage, and analytical procedures for chemical characterization of event-based samples in North Dakota: U.S. Geological Survey Water-Resources Investigations Report 83-4205, 71 p. Houghton, R.L., and Foss, J.E., 1985, Snowmelt trace-element enrichments in prairie potholes and soils of central North Dakota: National Atmospheric Deposition Program Technical Committee Meeting, Abstracts of Papers, October 8-11, 1985, p. 20. Houghton, R.L., and Snow, Ray, 1986, Sources of sulfate in wet deposition, North Unit of Theodore Roosevelt National Park, North Dakota: Proceedings, 78th Annual Meeting of the North Dakota Academy of Science, Grand Forks, N. Dak., April 24-26, 1986, p. 94. ## Hydrology of Area 46, Northern Great Plains Coal Province, North Dakota PROJECT NUMBER: ND 83-112. LOCATION: Northwestern North Dakota. PERIOD OF PROJECT: October 1982 to September 1983. PROJECT CHIEF: Mack G. Croft (retired). OBJECTIVES: The purpose of this study was to describe the hydrology of area 46 in a format readily usable by the coal-mining industry, regulatory agencies, interest groups (such as environmental organizations), and the general public. Objectives were to present (1) a description of the area in a hydrologic framework, (2) a quantitative assessment of the occurrence and availability of water, (3) an assessment of the present quality of available water, and (4) an identification of current and planned utilization of water. <u>APPROACH</u>: A topic outline was developed based on previous reports. Only existing data were utilized to establish an information framework for the study area. All available data were used to prepare graphs, maps, and text to fulfill the objectives of the study. The report was prepared in accordance with the STOP format. PROGRESS IN 1985: The report has been completed, but publication was delayed during typesetting. PLANS FOR 1986: Publication of the report is anticipated. REPORT PRODUCTS: Croft, M.G., and Crosby, O.A., Hydrology of area 46, northern Great Plains and Rocky Mountain coal provinces, North Dakota: U.S. Geological Survey Open-File Report 84-467, 135 p. (in press). #### SPECIAL STUDIES Special hydrologic studies often are needed to supplement the ongoing program. These special studies include water-supply problems, drainage problems, ground-water and surface-water relationships, ground-water recharge, water-quality problems, geochemical studies, and water management. The objective of special studies is to assist State and Federal agencies in solving water-resources problems that have both local impact and that are categorized as national concerns. ## Hydrologic Drainage-Basin Characteristics Determined Using Digital Elevation Models PROJECT NUMBER: None. LOCATION: Eddy, Foster, and Wells Counties, North Dakota. PERIOD OF PROJECT: June 1985 to December 1986. PROJECT CHIEF: Gregg J. Wiche. <u>COOPERATING AGENCIES</u>: (1) U.S. Department of the Interior, Bureau of Reclamation; and (2) U.S. Department of the Interior, Geological Survey, National Mapping Division. PROBLEM: The U.S. Bureau of Reclamation is evaluating the hydraulic characteristics of the Jamestown Dam and Reservoir under the Safety Evaluation of Existing Dams (SEED) program. The Bureau is charged with the responsibility of estimating the Probable Maximum Flood (PMF) into the reservoir. Key factors needed to compute the PMF are knowledge of whether a drainage area is contributing or noncontributing and knowledge of the hydrologic characteristics of the drainage basin. OBJECTIVES: The purpose of this study is to document methods developed to delineate drainage basins and compute hydrologic characteristics. Objectives of the study are (1) to apply the methods developed to compute the hydrologic characteristics of five test areas in the James River basin, (2) to test the performance of digital elevation models of various accuracies, and (3) to provide general cost estimates to procure digital elevation models of various accuracies. APPROACH: National Mapping Division/Mid-Continent Mapping Center personnel contracted for aerial photographs over the test areas and will generate special-product, high-resolution, high-accuracy digital elevation models. Spatial data-processing algorithms and data-interchange software will be used at the EROS Data Center to derive the hydrologic basin characteristics. PROGRESS IN 1985: The project proposal was developed and tasks for the different study participants were established. PLANS FOR 1986: Plans are to generate the digital elevation models and compute the drainage-basin characteristics using the software algorithms developed for the project. <u>REPORT PRODUCTS:</u> Hydrologic drainage-basin characteristics of five test areas in the James River basin determined using digital elevation models (planned). ## Pumping Techniques Bias in Chemistry of Ground-Water Samples PROJECT NUMBER: ND 81-096. LOCATION: Statewide. PERIOD OF PROJECT: October 1980 to September 1982. STATEWIDE PROJECT CHIEF: Robert L. Houghton. COOPERATING AGENCY: North Dakota State Water Commission. PROBLEM: One of the most common sources of error in the chemical analysis of ground water is bias introduced by chemical alteration during sampling. The largest source of alteration is believed to result from air entrainment during pumping. Therefore, if the nature and magnitudes of the biases of different common pumping techniques were known, it would be possible to determine which ground-water data currently on file are usable in future studies. Current quantitative studies would not be hampered by historical data of questionable accuracy. OBJECTIVES: The objective of this study is to determine the nature and magnitudes of chemical biases introduced during the sampling of ground water by several different common pumping methods. Pumps that will be investigated include air-lift, gas-squeeze, gas-driven reciprocating, peristaltic, and submersible centrifugal. Kemmerer-type and conventional bailers also will be investigated. Analyses of ground water sampled by these techniques will provide a basis for evaluating historical ground-water data and determining preferred methods for future sampling. APPROACH: In phase 1 of the project, only wells of similar construction will be studied, thus minimizing water-quality alteration due to well conditions. During phase 2, randomly selected wells will be sampled without regard to construction design, but only water from wells of similar construction and composition will be considered in each statistical group. To fully assess the affected properties, deep, intermediate, and shallow wells will be included. To assure applicability of the results to all water types, wells yielding sulfate-, bicarbonate-, and chloride-type waters will be studied. Additionally, adjacent wells drilled to the same aquifer depth but cased in different materials will be sampled to evaluate the effect of well construction on apparent ground-water quality. PROGRESS IN 1985: The draft report remained in the review process. PLANS FOR 1986: Publication of the final report is anticipated. REPORT PRODUCTS: Houghton, R.L., and Berger, M.E., 1984, Effects of well-casing composition and sampling methods on apparent quality of ground water: Proceedings, Fourth National Symposium and Exposition on Aquifer Restoration and Ground-Water Monitoring, Columbus, Ohio, May 23-25, 1984, National Water Well Association, p. 203-213. Houghton, R.L., and Berger, M.E., Effect of sampling method on apparent quality of ground water (in progress). # Water-Quality Assessment of the Souris River Within North Dakota PROJECT NUMBER: ND 82-103. LOCATION: Souris River within North Dakota. PERIOD OF PROJECT: October 1981 to September 1985. PROJECT CHIEF: Edwin A. Wesolowski. COOPERATING AGENCY: North Dakota State Department of Health. PROBLEM: Water-quality degradation of the Souris River has resulted in both intrastate dispute and international concern. The source and movement of contaminants are of concern to Saskatchewan and Manitoba, the municipalities and State agencies of North Dakota, and several Federal agencies. The North Dakota State Department of Health and the U.S. International Joint Commission's Souris River Pollution Control Board requested that a study be undertaken to determine the cause of water-quality degradation on the Souris River. Potential sources of water-quality degradation include inadequately treated municipal and industrial wastes, urban and rural runoff, feedlots, and several large wildlife refuges. OBJECTIVES: Objectives are (1) to define the hydrologic system and existing water-quality problems; (2) to determine time-of-travel, dispersion, and reaeration characteristics; (3) to quantitatively evaluate water-quality processes; and (4) to develop conceptual and digital models to evaluate the waste-load and water-quality relationships and to predict the effect of waste discharges on the river at various flows and at selected reaches of the river. APPROACH: Existing data will be used to identify seasonal water-quality and hydrologic trends and conditions for times when the river is susceptible to degradation. At these critical periods, additional data will be collected to isolate the processes that degrade stream quality. A one-dimensional steady-state water-quality model will evaluate these processes using the new data and field-determined times-of-travel and dispersion and reaeration coefficients. PROGRESS IN 1985: Inhouse and editorial reviews were completed for the report, "Traveltime, Longitudinal Dispersion, and Reaeration Characteristics of the Souris River from Lake Darling to J. Clark Salyer Refuge." Illustrations, figures, and tables were finalized and are ready for drafting. Some progress was made on analyzing the data for the "Analysis of Waste-Load Assimilation Capacity of the Souris River from Lake Darling to J. Clark Salyer Refuge" report. In the probability of having to change the approach and use an unsteady-state model instead of the planned steady-state model because of the precipitation received during synoptic sampling, initial work in applying an unsteady-state model was begun in one subreach. When these results are complete, they will be compared with steady-state results and a decision will be made on which model to use. <u>PLANS FOR 1986:</u> The report, "Traveltime, Longitudinal Dispersion, and Reaeration Characteristics of the Souris River from Lake Darling to J. Clark Salyer Refuge," will be sent out for colleague review and revised as necessary. Publication of the report is anticipated. The precipitation received and the intermittent releases from Minot's lagoon during the 1983 synoptic sampling may necessitate using an unsteady-state model instead of the planned steady-state model. Data used with the steady-state model will be reformatted for use with the unsteady-state model. Plans are to process the 1983 data, calibrate the model, prepare the illustrations, and begin writing the report, "Analysis of Waste-Load Assimilation Capacity of the Souris River from Lake Darling to J. Clark Salyer Refuge." <u>REPORT PRODUCTS</u>: Wesolowski, E.A., and Nelson, R.A., Traveltime, longitudinal dispersion, and reaeration characteristics of the Souris River from Lake Darling to J. Clark Salyer Refuge (in progress). Analysis of waste-load assimilation capacity of the Souris River from Lake Darling to J. Clark Salyer Refuge (planned). ## Hydrology of the Lower James River Basin in North Dakota PROJECT NUMBER: ND 82-104. LOCATION: Southeastern North Dakota. PERIOD OF PROJECT: October 1981 to September 1984. PROJECT CHIEFS: Paul K. Christensen and Jeffrey E. Miller. COOPERATING AGENCY: North Dakota State Water Commission. PROBLEM: Previous investigators have noted a hydraulic relation among the local glacial-drift aquifers, the terrace aquifers, and the lower James River in North Dakota. Irrigation and other developments in the James River basin are increasing their demands on the ground-water and surface-water system. As development of the water resources of the basin increases, concerns regarding the impact of development or proposed development on low flows and water quality in both the James River and the connected aquifers also increase. Before the North Dakota State Water Commission can begin to allow additional use of the water in the basin, the ground-water and surface-water system needs to be defined so that the effects of further development can be estimated. OBJECTIVES: Objectives are (1) to define the hydrology of the ground-water and surface-water system and (2) to develop quantitative capabilities for the evaluation of water-use impacts. APPROACH: The project will be done in a series of stages over a 3-year period. The ground-water and surface-water system will be defined to the extent possible with available data. Based on this definition, a data-collection procedure will be designed so that the system can be further defined. Ground-water levels, flow data, and ground-water and surface-water quality differences will be used to define the system. A preliminary report will be prepared. Additional data needs again will be determined and that data collected before the final system definition is completed. Based on the system and approach, a model will be developed, tested, and described in the final report. PROGRESS IN 1985: The data report was published, and the synopsis report continued in review. Final data development for the digital ground-water and surface-water model was completed, and the modeling system was calibrated and simulation runs made. A draft final report was completed and review begun. PLANS FOR 1986: Review of interpretative report products will continue. Final publication of the reports is planned during fiscal year 1987. REPORT PRODUCTS: Wald, J.D., and Christensen, P.K., 1986, Water-resources data for the lower James River, Dickey, LaMoure, and Stutsman Counties, North Dakota: North Dakota State Water Commission Water-Resources Investigation 2, 491 p. Christensen, P.K., and Miller, J.E., Progress report for the cooperator on the ground-water and surface-water system of the lower James River basin, North Dakota (not published). Christensen, P.K., and Miller, J.E., Hydrologic system of the lower James River, North Dakota (in progress). Christensen, P.K., Miller, J.E., and Patten, E.P., Spiritwood aquifer and James River system: Synopsis of the system and an evaluation of a management scheme, southeastern Stutsman and north-central LaMoure Counties, North Dakota (in progress). # Application of Unsaturated Zone Monitoring and Modeling Techniques to the Determination of Ground-Water Recharge PROJECT NUMBER: ND 83-120. LOCATION: Southeastern North Dakota. PERIOD OF PROJECT: October 1983 to September 1986. PROJECT CHIEF: William F. Horak (project chief is now in Oklahoma District). COOPERATING AGENCY: North Dakota State Water Commission. PROBLEM: A review of the hydrologic literature indicated that little precedent is available for direct, quantitative approaches to studying ground-water recharge and evapotranspiration (ET). Most geohydrologic studies have involved either loosely defined water budgets or water-level time-series analyses to estimate ground-water recharge or ET or both. Neither of these approaches is suitable for the intensive management of North Dakota's heavily developed glacial-drift aquifers. Attempts to simulate the effects of additional ground-water withdrawals on these aquifers have been frustrated by the lack of data defining recharge and ET. It is essential to the responsible management of the aquifers, therefore, that reliable estimates of the magnitudes of recharge and ET be made available. OBJECTIVES: Objectives are (1) to measure the hydraulic properties, including the functional relations of hydraulic conductivity and of matric potential to moisture content, for the major soil groups in the study area; (2) to evaluate the areal variability of those data; (3) to select a physically-based model(s) for simulation of unsaturated or variably saturated flow; (4) to use the model to estimate the sensitivity of the flow system to variations in soil hydraulic properties and assumed boundary conditions; (5) to collect the data required for use of the Penman combination method of estimating potential evapotranspiration (PET); and (6) to make recommendations as to the optimum manner in which to interface the data generated by the recharge and ET process model(s) with the ground-water flow model. APPROACH: The important emphasis of this study is the field collection of soil hydrologic data. Tensiometers and neutron moisture measurements will be used to define the soil-moisture characteristics for the major soils in the study area. The instantaneous profile method of determining unsaturated hydraulic conductivity also will be used. The acquired soil-moisture, moisture potential, and hydraulic conductivity data will be used with an unsaturated or variably saturated flow model to determine probable rates of ground-water recharge. Estimates of ET from the water table will be derived from the PET, moisture content, and moisture potential data. PROGRESS IN 1985: The draft report was prepared and is being reviewed. PLANS FOR 1986: Publication of the final report is anticipated. <u>REPORT PRODUCTS</u>: Horak, W.F., Evaluation of the theory and methodology for quantifying recharge and evapotranspiration for shallow glacial aquifers in North Dakota (in progress). # Evaluation of Streamflow-Gaging Methods for Application to Rivers with Flat Slopes, North Dakota PROJECT NUMBER: ND 83-121. LOCATION: Southeastern North Dakota. PERIOD OF PROJECT: October 1982 to September 1985. PROJECT CHIEF: Gregg J. Wiche. COOPERATING AGENCY: U.S. Department of the Interior, Bureau of Reclamation. PROBLEM: The James River, like many rivers in eastern North Dakota and other Plains states, has a flat slope and, therefore, experiences variable backwater conditions, slow velocities, and reverse flows. These conditions make accurate discharge measurements difficult to obtain and eliminate the usefulness of the standard single-value rating curve for streamflow-gaging applications. OBJECTIVES: Objectives are (1) to test and compare the feasibility, cost effectiveness, and accuracy of acoustical velocity meters, stage-fall discharge ratings, and unsteady-state flow models for gaging stream discharge and (2) to collect adequate field data to develop streamflow records at a site near Hecla, S. Dak. APPROACH: The stage data necessary to drive the unsteady flow model have been collected by constructing and operating three gaging stations. These stage data will be used to develop the unsteady-state flow model for a 4-mile section of the river ending at the downstream site. Discharge will be computed by the flow model at the downstream site. A stage-fall discharge rating will be developed at the downstream site. Discharge also is being collected at the downstream site using an acoustic velocity flow meter. The accuracy, feasibility, and cost effectiveness of the three methods used to collect discharge will be compared. In addition, a stage-discharge relationship has been developed at the upstream site (a low-head dam) and this discharge will be compared with the discharge at the downstream site. PROGRESS IN 1985: Work was suspended because funds were withheld pending the outcome of the Garrison Diversion Unit Commission hearings. PLANS FOR 1986: Contingent upon funding, the cross-section data, required as input to the unsteady flow model, will be compiled, and the initial calibration will be conducted. Development of the stage-fall discharge relationship will continue. Initial comparisons of discharge at the upstream and downstream sites will be undertaken. REPORT PRODUCTS: A comparison of gaging methods on the lower James River, North Dakota (planned). # An Investigation of the Hydrologic and Climatologic Mechanisms Controlling the Water-Surface Elevation of Devils Lake, North Dakota PROJECT NUMBER: ND 83-124. LOCATION: Northeastern North Dakota. PERIOD OF PROJECT: October 1983 to September 1984. PROJECT CHIEF: Gregg J. Wiche. COOPERATING AGENCY: U.S. Department of the Army, Corps of Engineers. PROBLEM: The current high water-surface elevations of Devils Lake pose an immediate flood threat to the city of Devils Lake. The U.S. Army Corps of Engineers has developed a draft report detailing a flood-control project at Devils Lake. In this project, four structural and nonstructural flood-control plans have been developed to prevent flooding. Implementation of any of these plans should be based on knowledge of the hydrologic and climatologic relationships of the Devils Lake system. OBJECTIVES: The purpose of this study is to gain an understanding of the interaction of the hydrologic and climatologic mechanisms controlling the water-surface elevation of Devils Lake. Objectives are (1) to conduct a literature review to determine what previous studies have been completed on other terminal lakes and (2) to conduct a statistical comparability analysis of the Devils Lake basin to other streams and basins. APPROACH: A literature review will be conducted to see what studies have been undertaken that may provide ideas and methods that can be incorporated in the present study. These findings from previous studies will provide guidelines as to what statistical techniques may show promising results. A statistical analysis of the Devils Lake basin and other streams and basins will be conducted using multiple linear regression. In addition, correlations will be made using the climatological indices of temperature and precipitation. PROGRESS IN 1985: The report, "Hydrologic and Climatologic Factors Affecting Water Levels of Devils Lake, North Dakota," has had colleague review and has been approved by Region. PLANS FOR 1986: Plans are to obtain Director's approval for publication. REPORT PRODUCTS: Wiche, G.J., Hoetzer, S.M., and Rankl, J.G., 1986, Hydrology of the Devils Lake basin, northeastern North Dakota: North Dakota State Water Commission Water-Resources Investigation 3, 86 p. Wiche, G.J., Hydrologic and climatologic factors affecting water levels of Devils Lake, North Dakota: U.S. Geological Survey Water-Resources Investigations Report 86-4320, 62 p. (in press). Wiche, G.J., Hydrology and water-level fluctuations of Devils Lake, North Dakota: Proceedings of the International Symposium on Flood Frequency and Risk Analysis, Baton Rouge, Louisiana, May 14-17, 1986 (in press). Ryan, G.L., and Wiche, G.J., Hydrology of a chain of lakes tributary to Devils Lake, North Dakota, and water-level simulations of Devils Lake (in progress). # Flood Analysis Along the Little Missouri River Within and Adjacent to Theodore Roosevelt National Park, North Dakota PROJECT NUMBER: ND 84-006. LOCATION: Little Missouri Badlands. PERIOD OF PROJECT: April 1984 to September 1984. PROJECT CHIEF: Douglas G. Emerson. COOPERATING AGENCY: U.S. Department of the Interior, National Park Service. <u>PROBLEM:</u> The U.S. National Park Service needs information on flood potential as part of a general management plan for the Theodore Roosevelt National Park. OBJECTIVES: Objectives are (1) to determine water-surface elevations for the 100- and 500-year flood discharges for selected reaches of the Little Missouri River; (2) to determine water-surface elevations for the 100-year flood discharge for the areas near the mouths of Knutson, Paddock, and Squaw Creeks; and (3) to evaluate the effects of ice jams on flood elevations. APPROACH: Peak-flow frequency analyses described by the U.S. Geological Survey (1982, Guidelines for determining flood flow frequency: Interagency Advisory Committee on Water Data, Office of Water Data Coordination, 28 p.) will be used to determine the flood discharges at the gaging stations, 06336000 and 06337000. The 100- and 500-year flood discharges for the Elkhorn Ranch Site will be determined by using the drainage-area ratio method. The 100-year flood discharges for the mouths of Knutson, Paddock, and Squaw Creeks will be determined by using a regression equation developed to determine flood-peak discharges for small drainage areas in North Dakota. Water-surface elevations will be determined by using step-backwater computations. PROGRESS IN 1985: The final report was prepared. PLANS FOR 1986: Publication of the report is anticipated. <u>REPORT PRODUCTS:</u> Emerson, D.G., and Macek-Rowland, K.M., Flood analysis along the Little Missouri River within and adjacent to Theodore Roosevelt National Park, North Dakota (in progress). #### Hydrogeochemical Controls on the Mobility of Radiogenic Constituents in Uraniferous Lignite and Ash in North Dakota PROJECT NUMBER: ND 84-125/126. LOCATION: Billings, Slope, and Stark Counties, North Dakota. PERIOD OF PROJECT: June 1983 to September 1987. PROJECT CHIEF: Robert L. Houghton. COOPERATING AGENCY: North Dakota Public Service Commission. PROBLEM: During operation of lignitic uranium mines in western North Dakota, airborne fugitive dust from the ashing of mined lignite was deposited on rangeland surrounding the sites. Adjacent to the kiln sites where the greatest amount of ashing occurred, soil became highly contaminated with radioactive and trace-metal residuals. After the abandonment of North Dakota lignitic uranium mines, most mine pits filled with ground water, providing a potential for mobilization of metals and radioactive components concentrated in ash and unburned lignite remaining in pit bottoms. Aquifers hydrologically connected with mine pits locally are used for domestic and livestock supply. OBJECTIVES: Objectives are (1) determination of the physiochemical conditions that promote the mobility of radiogenic, select trace metal, and other potentially hazardous chemical constituents from uraniferous lignite and its ash throughout the hydrologic system; (2) prediction of the mobility of these constituents at each of the abandoned mine sites in western North Dakota; (3) comparison of predicted and observed ground-water, pore-water, and surface-water compositions affected by mine-derived solutes; (4) development of reclamation methods that might limit hazardous-waste mobility from the sites; and (5) evaluation of reclamation practices adopted by the North Dakota Public Service Commission to restore the sites to maximum safe usefulness. APPROACH: The study consists of three phases. Phase 1 is designed to provide the geohydrologic and geohydrochemical data at all eight sites necessary to develop initial reclamation plans. Phase 2 will determine the geochemical processes controlling radiochemical mobility in the hydrologic system. Specifically, one uranium mining and ashing site that intersects the water table, a second uranium mining and ashing site remote from the water table, and a kiln processing site will be selected for extensive study. Phase 3 will determine the transference value of information gathered in phase 2 to the remaining phase 1 sites. Proof of transference is requisite before the simulation can be utilized to help develop standards for reclamation of mine sites. PROGRESS IN 1985: Ground and pore water in the vicinity of the mine sites were sampled seasonally. The spoil pile at the Palaniuk "A" mine site was drilled on 50-foot centers and sampled at 2-foot depth intervals. Spoil samples were analyzed for paste pH, specific conductance of soluble salt fraction at saturation, total uranium, total radium -226, and selected associated trace elements. Fence diagrams of these data were used to develop a reclamation plan for the site, and a pilot reclamation project was undertaken by the North Dakota Public Service Commission. Spoils with uranium concentrations more than five times greater than background concentrations were identified and mapped in three dimensions. Similarly, spoils with radium -226 concentrations more than 5 picocuries per gram greater than background levels or with spoils specific conductance greater than 5,000 microsiemens per centimeter at 25 degrees Celsius also were mapped. Spoils exceeding any of these criteria were identified for special handling. These "most-contaminated" spoils were replaced selectively in the mine pit above the water table to prevent dissolution of soluble uranium salts. Spoils with a specific conductance greater than 5,000 microsiemens per centimeter at 25 degrees Celsius were replaced at least 7.5 feet below the postreclamation ground surface so that revegetation would not be hindered and above the water table to prevent increasing dissolved-solids concentrations in the aquifer. Replaced spoils of high radioactivity and specific conductance were capped with clay from the base of the mine pit, and the surface topography was mounded to minimize infiltration that might introduce radioactive and other soluble salts into the aquifer. The spoils were covered with a minimum of about 5 feet of spoils and topsoil containing lesser concentrations of radioactive constituents to minimize postreclamation surface radiation exposure levels. Finally, the spoils were revegetated with a mixture of prairie grasses. PLANS FOR 1986: Monitoring and water-quality sampling will continue. The effectiveness of reclamation of the Palaniuk "A" mine site will be evaluated. Spoils characterization will be completed at the remaining Palaniuk, Frank, and Talkington mine sites. Monthly ground-water levels and drilling information will be used to develop flow models at the phase 2 sites. Solute transport equations may be applied if errors in the flow model are sufficiently low. REPORT PRODUCTS: Houghton, R.L., Wald, J.D., and Anderson, Garth, 1984, Hydrogeochemical controls on the mobility of radiogenic constituents at uraniferous lignite mines in southwestern North Dakota [abs.]: Proceedings, 76th Annual Meeting of the North Dakota Academy of Science, Fargo, N. Dak., v. 38, p. 59. Houghton, R.L., Wald, J.D., and Anderson, Garth, 1984, Hydrogeochemical controls on the mobility of radiogenic constituents in mine spoils and uraniferous lignite ash in southwestern North Dakota [abs.]: Proceedings of the 1984 Rocky Mountain Ground-Water Conference, Great Falls, Mont., April 8-11, 1984, Montana Bureau of Mines and Geology Special Publication 91, p. 26-27. Houghton, R.L., Wald, J.D., and Anderson, Garth, 1984, Hydrogeochemical controls on the mobility of radiogenic constituents in the coal-bearing Fort Union Formation and in lignite mines in western North Dakota: Proceedings of the 1984 Rocky Mountain Coal Symposium, Bismarck, N. Dak., p. 89-113. Houghton, R.L., Hall, R.L., Unseth, J.D., Wald, J.D., Anderson, G.S., and Hill, S.R., 1985, Hydrogeochemistry of uranium and associated elements at abandoned uranium mines in western North Dakota: Proceedings of the Second Toxic Waste Ground-Water Contamination Technical Meeting, Cape Cod, October 21-25, 1985, p. 1-3. Houghton, R.L., Hall, R.L., Unseth, J.D., Wald, J.D., Burgess, J.L., Patrick, D.P., Anderson, G.S., and Hill, S.R., 1986, Reclamation of a uraniferous lignite mine, North Dakota: Proceedings of the 1986 U.S. Department of Energy Low-Level Radioactive Waste Symposium, Denver, September 22-26, 1986 (in press). Distribution and hydrogeochemical mobility of radioactive and associated constituents in the coal-bearing Fort Union Formation of western North Dakota (planned). # Data Development and Analysis for Use in the U.S. Bureau of Reclamation Model on the James River PROJECT NUMBER: ND 84-128. LOCATION: Southeastern North Dakota. PERIOD OF PROJECT: October 1983 to September 1984. PROJECT CHIEF: Gregg J. Wiche. COOPERATING AGENCY: U.S. Department of the Interior, Bureau of Reclamation. PROBLEM: The James River planning model that will be developed by the U.S. Bureau of Reclamation will require as input data the nonregulated and regulated discharges at a number of locations along the James River. A combination of water-balance and statistical procedures will be used to synthesize the necessary input data. OBJECTIVES: The purpose of this study will be to compile and analyze the monthly discharge data needed as input to the planning flow model that will be developed by the U.S. Bureau of Reclamation. Objectives are (1) to compute regulated discharge for 1953-82 at the North Dakota-South Dakota State line, (2) to compute unregulated discharge for six James River locations, (3) to characterize the period of record in terms of the recorded climatological record, and (4) to compute revised drainage-area figures for the James River basin. APPROACH: Two methods will be used to compute the regulated discharge at the North Dakota-South Dakota State line. The first method of record reconstruction is the drainage-area ratio technique outlined by Hirsch (Hirsch, R.M., 1979, An evaluation of some record reconstruction techniques: Water Resources Research, v. 15, no. 6, p. 1781-1790). The second method will be to develop log-log regression between the monthly flows of James River at LaMoure and the monthly flows of James River at Ludden Dam, which is within a mile of the North Dakota-South Dakota State line. The unregulated flows will be computed by determining the effect of Jamestown and Pipestem Reservoirs and then subtracting or adding the monthly effect to the regulated flows at stations downstream of the reservoirs. PROGRESS IN 1985: The objectives of the study were completed, and a draft of the report was written. PLANS FOR 1986: Plans are to obtain Director's approval for report publication. REPORT PRODUCTS: James River model data (planned). ## Hydraulic Characteristics of Aquifers and Confining Units in the Fort Union Formation PROJECT NUMBER: ND 84-129. LOCATION: West-central North Dakota and eastern Montana. PERIOD OF PROJECT: October 1983 to September 1985. PROJECT CHIEF: Thomas B. Reed. PROBLEM: Previous studies of the hydrogeology of lignite deposits in North Dakota generally have not provided the areally distributed hydraulic data that are required for use in ground-water flow models. Without this type of data, the areal and temporal distribution of drawdown in the vicinity of a strip mine cannot be projected accurately. Furthermore, without valid, calibrated flow models, solute transport processes cannot be modeled quantitatively. OBJECTIVES: Objectives are (1) to evaluate the available methodologies appropriate for the in situ determination of hydraulic conductivity (or transmissivity), specific storage, and specific yield of fractured rock aquifers and for the determination of vertical hydraulic conductivity and specific storage of confining beds; (2) to establish and execute a systematic procedure for the collection and analysis of data required for the determination of the hydraulic properties of the lignite and sandstone aquifers and confining beds; (3) to examine the data for correlative relationships between lignite hydraulic conductivity and various physical or geologic parameters such as depth of burial or lignite bulk density; and (4) to compare values of aquifer hydraulic conductivity derived from slug testing with those derived from pumping tests to evaluate the validity of the slug test method for fractured rock and granular aquifers. APPROACH: Accomplishment of the study objectives will require a drilling program that will provide the production and observation wells necessary for the pumping and slug tests. Aquifer testing by pumping methods will require production wells to be drilled in several different locations, each fully penetrating the aquifer and each accompanied by several observation wells placed at varying distances and directions from the production well. Each of the wells completed in aquifer zones also will be used for slug testing. Additional wells will be completed in the confining beds. PROGRESS IN 1985: Aquifer tests were conducted on four of the sites, and slug tests were being conducted on a number of sites. The report was in the process of being written. PLANS FOR 1986: Plans are to complete the report and obtain approval for publication. REPORT PRODUCTS: Hydraulic parameters in the Fort Union Formation (planned). ## Effects of Fallowed Land on Soil Erosion, Northeastern North Dakota PROJECT NUMBER: ND 85-130. LOCATION: Northeastern North Dakota. PERIOD OF PROJECT: July 1983 to September 1986. PROJECT CHIEF: Robert L. Houghton. COOPERATING AGENCY: North Dakota State University. PROBLEM: Each year, large tracts of agricultural land in North Dakota are left fallowed. Recent Federally-sponsored programs have increased this acreage greatly. Because ground cover commonly is not used or is planted midsummer, early summer rains have a great potential to cause significant soil erosion. Currently, no easily applicable means of remotely determining the magnitude of this soil erosion are available. OBJECTIVES: Objectives are (1) to make semiquantitative estimates of soil erosion from farmlands managed with differing agricultural practices, (2) to determine the effect of land laid fallow on the magnitude of soil erosion, and (3) to determine the effect of expected increase in soil erosion on sediment loads in major rivers and their tributaries draining eastern North Dakota. APPROACH: Low-level aerial photography of fallow fields will be employed before and after the major summer rain period. Soil erosion will be estimated from rill patterns on the photographs and calibrated against ground-truth surveys. Calculated soil losses will be compared to suspended-sediment loads at stations in the small basins being investigated. PROGRESS IN 1985: Report preparation was initiated. PLANS FOR 1986: Plans are to publish the final report. REPORT PRODUCTS: Aerial determination of soil erosion in northeastern North Dakota (planned). ## Ground-Water Flow in the Marstonmoor Aquifer in the Vicinity of Chase Lake, North Dakota PROJECT NUMBER: ND 85-134. LOCATION: Kidder and Stutsman Counties, North Dakota. PERIOD OF PROJECT: April 1985 to September 1986. PROJECT CHIEF: Thomas B. Reed. COOPERATING AGENCY: U.S. Department of the Interior, Fish and Wildlife Service. PROBLEM: Chase Lake National Wildlife Refuge is the sole nesting area for the white pelican. Irrigation wells have been installed near the refuge, and refuge officials fear that pumpage will cause lake-level declines and threaten the nesting area. OBJECTIVES: The purpose of this study is to determine whether nearby irrigation pumpage can effect a decline in the level of Chase Lake. Objectives are to ascertain ground-water gradients and relative transmissivities adjacent to the lake. APPROACH: Ground-water wells and meteorological stations will be installed to measure aquifer gradients around the lake and hydrologic impacts to the system. A ground-water flow model may be used to determine whether irrigation pumpage is likely to affect lake levels. PROGRESS IN 1985: Observation wells were drilled and developed, and a program of monitoring water levels was being arranged. A profile of Chase Lake was completed. PLANS FOR 1986: Plans are to write the draft report and begin the review process. REPORT PRODUCTS: Ground-water flow in the Marstonmoor aquifer in the vicinity of Chase Lake, North Dakota (planned). ## Generation of a Data Base for the James River Salinity Model, North Dakota and South Dakota PROJECT NUMBER: ND 85-135. LOCATION: James River basin of eastern North Dakota and South Dakota. PERIOD OF PROJECT: April 1985 to December 1986. PROJECT CHIEF: Lawrence I. Briel. COOPERATING AGENCY: U.S. Department of the Interior, Bureau of Reclamation. PROBLEM: Operation of the Garrison Diversion Unit will bring Missouri River water into the James River basin to augment flows in the James River. The additional flows will permit expanded irrigation and provide new supply for municipalities and industry. Increased irrigation may increase riverwater salinity beyond acceptable limits. Before the U.S. Bureau of Reclamation can model unit impact on river salinity, model inputs must be estimated in a hydrochemically sound manner. OBJECTIVES: Objectives of this study are (1) to generate input data required by the river-salinity model of the U.S. Bureau of Reclamation in order to evaluate a variety of management options and (2) to index the effect of each option on water quality in the James River. APPROACH: Successive reaches of the James River will be defined for purposes of the salinity model. For each reach, input of water-quality and -quantity data is required for modeling surface-water, ground-water, and irrigation return flows. Most information on surface-water contributions will be taken from the historical gaged records. Ungaged surface-water inflows will be estimated from residuals in the flow model and assigned salinities based on historical data. Ground-water data will be estimated from seepage information. Irrigation return flow quality will be estimated from extract or reaction-model data. PROGRESS IN 1985: The historical data base was screened to eliminate questionable data. Equations relating surface-water salinity to flow were developed for each stream reach and major tributary. Monthly mean data bases have been developed for the period of record. Ground-water and irrigation return flow qualities have been developed based on available ground-water and extract quality data. The methods used to develop the data bases have been documented in an interpretative report that currently is in the review process. ## Heat and Water Transport Model for Seasonally Frozen Soils in North Dakota PROJECT NUMBER: ND 85-131. LOCATION: Eastern Dickey County, southeastern North Dakota. PERIOD OF PROJECT: January 1985 to September 1987. PROJECT CHIEF: Douglas G. Emerson. COOPERATING AGENCY: North Dakota State Water Commission. <u>PROBLEM:</u> Snow cover is an important manageable water resource of the northern prairies. To take full advantage of this water resource, an understanding of the processes of runoff and water movement into and through seasonally frozen soils and an operational procedure to quantify these processes are needed. OBJECTIVES: Objectives are (1) to develop a physically-based model for simulation of flow through seasonally frozen soils, (2) to measure the hydraulic properties of soil types in a study area and collect meteorological and hydrological data for verification of the model, (3) to use the model concurrently with the data-collection process to evaluate the sensitivity of the model's flow system to variations in soil hydraulic properties and driving variables, and (4) to couple the model to the U.S. Geological Survey's precipitation-runoff modeling system. APPROACH: A physically-based heat and water transport model for seasonally frozen soils will be developed. Data collection will consist of measuring the necessary parameters to verify the snow accumulation and melt, soil freezing and thawing, and soil water content. PROGRESS IN 1985: Data-collection sites were established and data collection was started. PLANS FOR 1986: Plans are to develop a model and continue to collect data. REPORT PRODUCTS: Emerson, D.G., 1985, Heat and water transport model for seasonally frozen soils in North Dakota: Study Plan; in Proceedings, Workshop/Symposium: Snow Management for Agriculture, 17 p. Emerson, D.G., Heat and water transport model for seasonally frozen soils (planned). Emerson, D.G., and Sweeney, M.D., Seasonally frozen soils in south-central North Dakota (planned). PLANS FOR 1986: The methods used to develop the dissolved solids-specific conductance data base for the salinity model will be expanded to include available data on the following conservative water-quality constituents: total hardness, sulfate concentration, chloride concentration, and sodium concentration. Documentation of the methods used to develop these additional data bases will be made in a separate report. REPORT PRODUCTS: Briel, L.I., and Houghton, R.L., Generation of a data base for the James River salinity model, North Dakota and South Dakota (in progress). #### Ground-Water Flow in the Warwick Aquifer, North Dakota PROJECT NUMBER: ND 85-136. LOCATION: Benson, Eddy, and Ramsey Counties, North Dakota. PERIOD OF PROJECT: April 1985 to PROJECT CHIEF: Thomas B. Reed. COOPERATING AGENCY: U.S. Department of the Interior, Bureau of Indian Affairs. $\underline{\textit{PROBLEM}}$ : It has been proposed to use the Warwick aquifer to irrigate land on the Fort Totten Indian Reservation. However, it is not known if the aquifer can sustain the required withdrawals. OBJECTIVES: The purpose of this study is to augment existing hydrologic knowledge of the Warwick aquifer to determine if the aquifer will sustain planned irrigation withdrawals. APPROACH: Most hydrologic properties of the aquifer are known. Additional wells will be installed to determine leakage from East Devils Lake into the aquifer and seepage from the aquifer to the Sheyenne River. This information will be sufficient to complete input requirements for a simple ground-water flow model to evaluate irrigation potential. PROGRESS IN 1985: The observation-well network was drilled, and the development and monitoring program was begun. PLANS FOR 1986: Plans are to write the draft report and begin the review process. REPORT PRODUCTS: Irrigation potential from the Warwick aquifer, north-central North Dakota (planned). # Effects of Irrigation and Ground-Water Recharge Practices on the Quantity and Quality of Shallow Ground Water and on Soil Productivity along the James River, North Dakota PROJECT NUMBER: ND 85-137. LOCATION: Dickey and Sargent Counties, North Dakota. PERIOD OF PROJECT: May 1985 to September 1987. PROJECT CHIEF: Robert L. Houghton. COOPERATING AGENCIES: (1) North Dakota State Water Commission; and (2) U.S. Department of the Interior, Bureau of Reclamation. <u>PROBLEM:</u> The Garrison Diversion project includes plans to irrigate about 46,000 acres of land in the Oakes area. To assure sufficient water supply for irrigation, a proposal was made by the 12-member Garrison Diversion Unit Commission to supply irrigation water from the Oakes aquifer and to recharge the aquifer with James River water during peak flows. OBJECTIVES: The purpose of this study is to provide the means to evaluate the effects of an irrigation/ground-water recharge management plan for the Oakes aquifer on ground-water quantity and quality prior to its implementation. Objectives include (1) determination of aquifer thickness and hydraulic properties; (2) development of a regional, two-dimensional ground-water flow model for the Oakes aquifer; (3) development of a three-dimensional ground-water flow model of a single recharge pit; (4) evaluation of the feasibility of other recharge designs; and (5) determination of the effect of recharge design on water quality in the aquifer. APPROACH: Observation wells will be installed in the Oakes aquifer to provide information on hydraulic heads and water quality. Aquifer tests, core samples, and geophysical logs will be evaluated to determine the hydraulic properties of the aquifer. A two-dimensional ground-water flow model of the aquifer will be developed. Based on design plans for the Garrison Diversion project, a three-dimensional ground-water flow model will be developed to evaluate the operation of a ground-water recharge pit and determine its optimum dimensions. Based on the two models developed, a network of recharge pits necessary to produce the required recharge will be designed and its effects on the aquifer evaluated by another ground-water flow model. PROGRESS IN 1985: The observation-well network was designed, installed, and sampled. Aquifer tests were completed. Initial design and evaluation of the effectiveness of recharge pits using a three-dimensional ground-water flow model was begun. <u>PLANS FOR 1986:</u> Design and evaluation of the effectivness of recharge pits will be completed. A pilot recharge facility will be designed and a plan to monitor its efficiency will be developed. A draft manuscript characterizing the hydraulic properties of the Oakes aquifer, its water quality, and its general hydrologic budget will be prepared. <u>REPORT PRODUCTS:</u> Shaver, R.S., and Houghton, R.L., Hydrogeology of the Oakes aquifer (in progress). #### ENERGY-RELATED STUDIES Expanding domestic energy demand has resulted in increased coal production and associated development in North Dakota. To meet the requirements for coal leasing and environmental protection, the U.S. Geological Survey is conducting studies to evaluate the water resources in areas of current and planned development. These studies are effected through the cooperation of interested agencies and the U.S. Geological Survey. # Evaluation Through Modeling of Probable Surface-Water Hydrologic Effects of Future Lignite Mining and Reclamation Activities in the Antelope Creek Area, Mercer County, North Dakota, and the Wibaux-Beach Deposit Area, Wibaux County, Montana, and Golden Valley County, North Dakota PROJECT NUMBER: ND 80-087. LOCATION: Mercer County, North Dakota, and Wibaux County, Montana. PERIOD OF PROJECT: October 1979 to September 1982. PROJECT CHIEF: Douglas G. Emerson. <u>COOPERATING AGENCY:</u> U.S. Department of the Interior, Bureau of Land Management. PROBLEM: The U.S. Bureau of Land Management has the responsibility of evaluating leasing applications for mining of Federal coal. Their evaluations must address environmental impacts, which include those of hydrology. A basic problem to be addressed in this study is the assessment of impacts of surface mining on the surface-water hydrology of mined and adjacent unmined areas. OBJECTIVES: Objectives are (1) to determine premining hydrologic conditions in a small representative drainage basin, (2) to provide historical data with which to compare the magnitude of change with mining, and (3) to develop the capability of making reasonably accurate projections of hydrologic effects resulting from the various land treatments imposed by surface mining. APPROACH: This will be a comprehensive study of two small representative watersheds. A surface-water model will be developed through coupling of snowmelt-rainfall runoff models. A modular-design program will be used with each element of the hydrologic system being defined by a subroutine. This program has the capability of combining subroutines to best fit a particular problem. A distribution-parameter approach is being used by having the basin partitioned into subunits based on slope, aspect, vegetation type, soil type, and snow distribution. Each subunit will be considered homogeneous with respect to these parameters. Partitioning into subunits will help define the temporal and spatial variations of the hydrologic characteristics, climatic variables, and overall system response. PROGRESS IN 1985: The analysis report was revised after colleague review. PLANS FOR 1986: Publication of the analysis report is anticipated. REPORT PRODUCTS: Emerson, D.G., 1981, Progress report on the effects of surface mining on the surface-water hydrology of selected basins in the Fort Union coal region, North Dakota and Montana: U.S. Geological Survey Open-File Report 81-678, 28 p. Emerson, D.G., 1982, Hydrologic analysis of high flow from snowmelt on small basins in the Fort Union coal region: Proceedings, 74th Annual Meeting of the North Dakota Academy of Science, Bismarck, N. Dak., April 22-24, 1982, v. 36, p. 42. Emerson, D.G., Norbeck, S.W., and Boespflug, K.L., 1983, Data from the surface-water hydrologic investigations of the Hay Creek study area, Montana, and the West Branch Antelope Creek study area, North Dakota, October 1976 through April 1982: U.S. Geological Survey Open-File Report 83-136, 273 p. Emerson, D.G., Hydrologic analyses of Hay Creek, Montana, and West Branch Antelope Creek, North Dakota (in progress). # Geochemistry of the Upper Fort Union Group as Related to Impacts of Strip Mining of Lignite in the Gascoyne Area, North Dakota PROJECT NUMBER: ND 80-089. LOCATION: Southwestern North Dakota. PERIOD OF PROJECT: October 1979 to September 1985. PROJECT CHIEF: Robert L. Houghton. COOPERATING AGENCIES: (1) North Dakota Geological Survey (1980-83); (2) North Dakota Public Service Commission (1983-85); (3) U.S. Department of the Interior, Bureau of Land Management (1980-82); and (4) U.S. Environmental Protection Agency (1981-82). PROBLEM: Simultaneous demands for expanded surface-mining activity, agricultural production, and urban development are placing ever-increasing strains on the land and water resources of the region. Studies of the environmental effects of surface mining have begun to provide the data base required to make these land-use decisions, but failure to understand the geochemistry of water-rock interactions may seriously limit the options for future coal development in the Fort Union coal region. Definition of these reaction mechanisms and rate-controlling factors could lead to the recognition of critical parameters governing probable water-rock interactions at other and projected mine sites within the Fort Union lignite region. OBJECTIVES: The purpose of this study is to quantitatively describe major controls on the movement of critical solutes in local and regional ground-water systems within the Fort Union Group affected by surface mining of lignite in western North Dakota. Objectives at the Gascoyne site are to define the hydrogeologic and hydrogeochemical character of the shallow ground-water system in the area and to ascertain the source of observed anomalous sulfate concentrations. The effects of discharge of mine-impacted ground water on the surface-water system in the area also are of concern. APPROACH: The first phase will be to establish a clear and complete understanding of the hydrologic regime. Next, the mineralogy and mineral chemistry of the Fort Union Group will be determined. Thirdly, formation cation—exchange rates and constants will be determined. Fourth, oxidation—reduction reactions will be defined for important species pairs. Finally, the solute flux from mine to locations of water use must be defined as mining expands. PROGRESS IN 1985: Continued monitoring of 26 ground-water wells and one surface-water station on a tributary of Buffalo Creek draining the mine area provided additional data on temporal hydrochemical changes in the vicinity of the Gascoyne mine. Review of the data base to identify which chemical parameters in ground and surface water best indicate mine impact was continued. <u>PLANS FOR 1986</u>: Monitoring of the ground-water wells and one surface-water station will continue. A summary of the existing hydrochemical data will be developed. Work will continue on the reports. REPORT PRODUCTS: Fisher, D.W., Thorstenson, D.C., Croft, M.G., and Houghton, R.L., 1985, Geochemical processes in the Gascoyne lignite mining area, Bowman County, North Dakota: U.S. Geological Survey Water-Resources Investigations Report 84-4192, 80 p. Houghton, R.L., 1982, Hydrochemistry of shallow ground water from the Fort Union Group near the Peerless lignite strip mine, Gascoyne, southwestern North Dakota [abs.]: Proceedings, 74th Annual Meeting of the North Dakota Academy of Science, Bismarck, N. Dak., p. 40. Houghton, R.L., 1982, Hydrogeochemical consequences of strip mining in the Fort Union Group of southwestern North Dakota: Proceedings of the 1982 National Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation, Lexington, Ky., December 6-10, 1982, p. 79-86. Houghton, R.L., 1982, Trace-element enrichments in waters associated with strip mining of lignite in the Fort Union Group of southwestern North Dakota [abs.], in Gough, L.P., and Severson, R.C., eds., Trace-element mobilization in western energy regions: Colorado School of Mines Research Institute, Golden, Colo., p. 46. Houghton, R.L., 1982, Weathering of coal scoria—a source for diagenetic silica cements? [abs.]: Proceedings of the U.S. Geological Survey Workshop on Diagenesis, Denver, Colo., March 1982, p. 36. Houghton, R.L., and Davison, D., 1982, Stratigraphy and paleoenvironment of the Paleocene Fort Union Group of the Williston basin near Gascoyne, southwestern North Dakota [abs.]: Proceedings, 74th Annual Meeting of the North Dakota Academy of Science, Bismarck, N. Dak., p. 15. Houghton, R.L., Thorstenson, D.C., Fisher, D.W., and Groenewold, G.H., 1984, Hydrogeochemistry of the upper part of the Fort Union Group in the Gascoyne lignite strip-mining area, North Dakota: U.S. Geological Survey Open-File Report 84-131, 184 p. Houghton, R.L., 1985, Inverse modeling of solute transport in shallow ground water, With an example of sulfate movement around a lignite mine in southwestern North Dakota: Proceedings, 77th Annual Meeting of the North Dakota Academy of Science, Minot, N. Dak., v. 39, p. 53. Houghton, R.L., Thorstenson, D.C., Fisher, D.W., and Groenewold, G.H., Hydrogeochemistry of the upper part of the Fort Union Group in the Gascoyne lignite strip-mining area, North Dakota: U.S. Geological Survey Professional Paper 1340 (in press). Houghton, R.L., Probable and observed hydrologic consequences of lignite strip mining in the Fort Union Group near Gascoyne in southwestern North Dakota (in progress). #### Evaluation of Probable Hydrologic Effects of Future Lignite Mining and Subsequent Reclamation Activities in the M & M Deposit, Williams County, North Dakota PROJECT NUMBER: ND 81-091. LOCATION: Northwestern North Dakota. PERIOD OF PROJECT: October 1980 to September 1983. PROJECT CHIEFS: William F. Horak, Jr. (1980-83), Clarence A. Armstrong (1984-85), and Robert L. Houghton (1986). <u>COOPERATING AGENCY:</u> U.S. Department of the Interior, Bureau of Land Management. <u>PROBLEM:</u> There is a lack of reliable and detailed geologic and hydrologic data for the assessment of the hydrologic effects of strip mining the lignite coal in North Dakota. The mining will, in some areas, affect the availability of water for shallow wells. The quality of water will be changed through displacement and mixing of overburdened materials. Sediment yields from the areas will be changed. The ground-water interrelationship with surface water will be altered. None of these effects can be evaluated without a thorough knowledge of present hydrologic conditions. OBJECTIVES: Objectives are (1) to define the hydrologic regime in the greatest possible detail consistent with the duration of the study and funding, including assessment of the ground-water flow system and its chemical characteristics, determination of flow frequencies and magnitude, chemical quality, and sediment concentration and load of the larger streams; (2) to establish a historical data base; and (3) to develop the capability for projecting the hydrologic effect of physical treatments imposed by surface mining. APPROACH: Data will be assembled and collected for use in conjunction with digital models to define the ground-water flow system. The surface-water system will be defined through available records, data collection, and regionalized equations. Quality of water will be defined through an intensive sampling program. Methods for estimating the hydrologic effects of various land treatments imposed by mining will be developed. PROGRESS IN 1985: The draft report continued in review. PLANS FOR 1986: Plans are to complete review through Director's approval and publish the report. REPORT PRODUCTS: Armstrong, C.A., Crosby, O.A., Horak, W.F., and Houghton, R.L., Hydrologic system and probable hydrologic consequences of mining in the M & M lignite area, southeast Williams County, North Dakota (in progress). ## Surface-Water Resources, Fort Union Coal Region of Western North Dakota PROJECT NUMBER: ND 82-107. LOCATION: West-central North Dakota. PERIOD OF PROJECT: October 1977 to September 1982. PROJECT CHIEF: Norman D. Haffield. COOPERATING AGENCIES: Other Federal agencies. OBJECTIVES: The purpose of this study is to describe the surface-water resources of the Fort Union coal region of western North Dakota in a readily usable format. Objectives are (1) to determine the streamflow and water-quality characteristics for the streams located in the region and (2) to describe seasonal and areal variations that occur within the various stream systems. APPROACH: All existing data will be condensed and analyzed in order to define the characteristics of the various components of the streamflow systems that are located within the region. PROGRESS IN 1985: A limited amount of data analysis work was done. PLANS FOR 1986: As time permits, work will continue on data analysis. REPORT PRODUCTS: Haffield, N.D., Streamflow and water quality for streams in Fort Union coal region in North Dakota (in progress). ## Evaluation of the Hydrologic System in the New England-Mott Coal Area, Adams and Hettinger Counties, North Dakota PROJECT NUMBER: ND 83-110. LOCATION: Southwestern North Dakota. PERIOD OF PROJECT: October 1982 to PROJECT CHIEFS: Mack G. Croft (1982-85) and George Garklavs (1986). PROBLEM: The need for the proposed study came about as a response to the Interior Department's request for hydrologic information concerning Federal coal lands leased and eligible for lease within the New England-Mott lignite deposit. Probably the most obvious effect of coal development in the study area will be the disruption of aquifers existing in the lignite beds and overburden material. The majority of farmsteads in the area (virtually all rely on ground water for their water supply) draw water from wells 400 feet or less in depth. Depending on the hydraulic properties and the areal continuity of the lignite and adjacent aquifer, many of these water supplies could be diminished or obliterated. Any coal-development-induced diminuation of streamflow, increase in dissolved chemical constituents, or increase in sediment load could have an effect on the usability of water in Thirty Mile Creek and the Cannonball River. OBJECTIVES: The primary objective will be to define the hydrologic regime in the greatest possible detail consistent with the project duration and funding. This includes assessment of the ground-water flow system and chemical characteristics and determination of surface-water flow magnitudes, chemical quality, sediment concentration, and sediment load. By defining the hydrologic regime of the study area, a second objective will be satisfied—the establishment of a historical data base with which to monitor changes in the system as mining proceeds. APPROACH: Existing geologic and hydrologic data will be assembled and used to establish an information framework of the study area. Limited surface-runoff, water-level, and quality-of-water information will be collected in the field. Where possible, regionalized information will be used to define the hydrology. The final report will assess the available information and make recommendations as to whether further study is needed for leasing purposes. PROGRESS IN 1985: A detailed project proposal and work plan was prepared. A limited canvass of wells and collection of additional water samples was completed in the area. Data were assembled and illustrations and text prepared. The report is ready for colleague review. PLANS FOR 1986: Plans are to process reviews and obtain Director's approval for publication. <u>REPORT PRODUCTS</u>: Wald, J.D., and Norbeck, S.W., 1983, Ground-water data for selected coal areas in western North Dakota: U.S. Geological Survey Open-File Report 83-219, 229 p. Croft, M.G., Hydrology of New England-Mott coal area, North Dakota (in progress). ## Hydrochemical Impacts of Surface Mining of Lignite-The Sulfur Cycle PROJECT NUMBER: ND 83-113/114. LOCATION: Fort Union coal region, North Dakota. PERIOD OF PROJECT: October 1983 to September 1984. PROJECT CHIEF: Robert L. Houghton. COOPERATING AGENCY: North Dakota Geological Survey. PROBLEM: Hydrogeochemical studies of the impacts of surface mining of lignite in recharge areas of the northern Great Plains have not unambiguously defined the sulfur cycle. As sulfate is the principal cause of ground-water deterioration in the vicinity of mines, it is vital that the sulfur cycle be defined so that appropriate reclamation procedures may be developed to mitigate sulfate generation. OBJECTIVES: Detailed geochemical investigations will be made to quantitatively describe the sulfur sources that contribute to ground-water sulfate in strip mines situated in recharge zones and to determine the hydrogeochemical processes that control the sulfur path to the ground water. Isotopic studies will be employed (1) to trace sulfur transformations among solid and aqueous species present throughout the sulfur cycle, (2) to quantify the relative magnitude of each transformation as a contributor to ground-water sulfate concentrations, and (3) to determine which transformations are affected by biological activity. APPROACH: Cores and ground- and pore-water samples will be obtained from two active strip mines and one potential mine site. Sulfur species present at various depths will be identified and the sulfur isotopic ratios will be used to determine transformation paths. Samples also will be obtained with minimal contamination for determination of the presence and activity of sulfur-metabolizing microorganisms. Comparison of organism distributions and isotopic ratios will be used to determine the stages at which biological activity affects the sulfur cycle. Observations will be simulated in the laboratory as a control check. PROGRESS IN 1985: Preliminary drafts of final reports were initiated. All data collection was completed. PLANS FOR 1986: Final reports will continue to be processed toward publication. REPORT PRODUCTS: Houghton, R.L., Koob, R.D., and Groenewold, G.H., 1985, Progress report on the geochemistry of the sulfur cycle in northern Great Plains coal mines: U.S. Geological Survey Water-Resources Investigations Report 85-4016, 70 p. Houghton, R.L., Koob, R.D., and Groenewold, G.H., 1985, Sulfur cycle in western coal mines, in Hitchon, Brian, and Wallick, E.I., eds., Proceedings of the First Canadian/American Conference on Hydrogeology--Practical Applications of Ground-Water Geochemistry, Banff, Alberta, Canada, June 22-26, 1984: Worthington, Ohio, National Water Well Association, p. 306-314. Houghton, R.L., Koob, R.D., Groenewold, G.H., and Brekke, Dave, Geochemistry and microbiology of sulfur in shallow ground-water systems associated with lignite deposits, North Dakota (in progress). ### Evaluation of Effects of Ongoing and Future Mining and Reclamation Activities in Western North Dakota PROJECT NUMBER: ND 83-115. LOCATION: Western North Dakota. PERIOD OF PROJECT: October 1982 to September 1985. PROJECT CHIEF: Douglas G. Emerson. COOPERATING AGENCY: North Dakota Public Service Commission. PROBLEM: The State of North Dakota and the Department of the Interior have signed a cooperative agreement whereby the State will regulate surface coal mining and reclamation operations on Federal lands in North Dakota. The North Dakota Public Service Commission serves as the State regulatory authority to administer this agreement as well as the regulations for State—and privately—owned lands. Although the obligation for hydrologic monitoring to determine the effects of mining falls to the mining company, the North Dakota Public Service Commission needs unbiased information to effectively assure adherence to the regulations. OBJECTIVES: The purpose of this study is to provide the capability to assess and predict the effects of mining and energy development on the hydrologic system. Objectives are (1) to monitor the variations in the quantity and quality of surface water below active energy-development sites, (2) to use the data collected to augment and refine predictive models presently available, and (3) to verify the transferability of a calibrated watershed model. APPROACH: The study includes the operation of five stream-gaging and water-quality sites, one complete weather station, and three precipitation sites. The U.S. Geological Survey's Precipitation-Runoff Modeling System has been selected as the predictive model. The model has not been completely calibrated for the site where the model was developed, but this site is one of the five to be operated under this project. Plans are to collect enough data at the sites to check verification of the model. The present plans are to collect data for 3 years depending on runoff conditions. PROGRESS IN 1985: Data were collected on a continuing basis. Streamflow data were being published in the annual water-resources data report. PLANS FOR 1986: Collection of streamflow and chemical quality data will continue. Meteorological stations will be discontinued. REPORT PRODUCTS: Data report of streamflow, chemical quality, and meteorological data (planned). ## Hydrogeologic and Geochemical Data Base for Coal Areas in North Dakota PROJECT NUMBER: ND 85-132/133. LOCATION: Fort Union coal region, North Dakota. PERIOD OF PROJECT: October 1984 to September 1986 (preproject--May 1984 to October 1984). PROJECT CHIEF: Lawrence I. Briel. COOPERATING AGENCIES: (1) U.S. Department of the Interior, Bureau of Land Management; and (2) North Dakota Public Service Commission (preproject). PROBLEM: Models of the principal geochemical processes controlling water quality in North Dakota and the effects of mining on these processes have been developed during other investigations. Chemical characteristics are determined routinely on overburden and spoils both prior to and during mining as part of the permitting requirements and also have been collected during scientific investigations of the hydrochemical consequences of mining. Accordingly, a large and growing body of data exists for use as input to chemical models. However, data collected by the various industry and government groups are not readily accessible. OBJECTIVES: The purpose of this study is to develop a geochemical data base storing data required as input to the model that has been developed to predict the hydrochemical consequences of mining. Objectives include (1) designing a data base for storage of overburden geochemical data required to run models to predict the hydrochemical consequences of mining, (2) initiating data transfer from other data files to this data base, and (3) providing access to the data base by all participating industries and agencies while protecting the propriety of provisional data. APPROACH: Design of the data base will be undertaken in a tiered fashion. Individual samples will be identified uniquely by geographic location, depth, date and time of collection, and medium type. Numerical parameter codes will be used to identify individual sample constituents or properties, analytical methods, and collecting and analyzing agencies for which data values are stored. To facilitate rapid development of the data base and ease of use by others, the data base will be designed around the existing U.S. Geological Survey WATSTORE data base. The WATSTORE control code will be modified to extend sample identification to include the depth parameter. PROGRESS IN 1985: The project was funded and approved in 1985. PLANS FOR 1986: Work is expected to begin in late 1986. <u>REPORT PRODUCTS:</u> User manual and documentation for hydrogeologic and geochemical data base management system (planned). ## Evaluation of the Potential for Toxic-Element Consequences Due to the Garrison Diversion Unit, North Dakota and South Dakota PROJECT NUMBER: ND 86-138. LOCATION: James River basin, North Dakota and South Dakota. PERIOD OF PROJECT: March 1986 to September 1987. PROJECT CHIEF: Lawrence I. Briel. <u>COOPERATING AGENCY:</u> U.S. Department of the Interior, Bureau of Reclamation. PROBLEM: Arid to semiarid conditions and the common occurrence of fine-grained, frequently organic-rich, marine sediments and their erosion products in western North America provide a potential source of a variety of toxic elements. Changes in environmental conditions, such as those accompanying irrigation and associated water projects, may provide for enhanced concentration or remobilization of these elements, potentially limiting water and soil use and affecting the ecological system dependent upon the resources. Proposed expansion of irrigation in the James River basin as part of the Garrison Diversion Unit could produce such consequences. Because the need to be concerned about these processes was recognized only recently, the expertise necessary to evaluate the potential consequences of Garrison is not available in any single agency and the procedures required to assess the potential are not fully developed. OBJECTIVES: The purpose of this study is to evaluate the potential effects of expanded irrigation within the Garrison Diversion Unit on the mobility and availability of potentially toxic trace elements. Objectives include identification of the concentration, distribution, speciation, and mobility of potentially toxic trace elements in areas of proposed irrigation development within the Garrison Diversion Unit. APPROACH: The U.S. Geological Survey, Water Resources Division, North Dakota District is coordinating investigations by the Water Resources Division and Geologic Division, according to the expertise of each. The study will be conducted in two phases: (1) A preliminary phase designed to provide a reasonable assessment of the potential consequences of Garrison Diversion Unit development on the availability of potentially toxic trace elements in time to be included in the final Environmental Impact Statement and (2) a research phase that will expand on the confidence level of preliminary studies and permit development of Garrison Diversion Unit management practices that may be expected to limit or prevent concentration or remobilization of potentially toxic trace elements. PROGRESS IN 1985: None; new project in 1986. PLANS FOR 1986: Ground-water samples will be collected and analyzed for major and trace constituents. Soil samples collected by the U.S. Bureau of Reclamation will be analyzed by the Geologic Division for total trace-element composition and for soluble-salt composition. The Water Resources Division will determine constituent phase speciation using sequential extractions and evaluate the effects of changing environment on toxic-element availability. A summary report will be prepared for inclusion in the environmental impact statement. REPORT PRODUCTS: Houghton, R.L., Wilson, S.A., Filipek, Lorraine, and Briel, L.I., Toxic-element distribution and availability in soils within the Garrison Diversion Unit, James River basin, North Dakota (planned). ## Evaporation and Ground-Water Interaction of Devils Lake, North Dakota PROJECT NUMBER: ND 86-139. LOCATION: Devils Lake basin, northeastern North Dakota. PERIOD OF PROJECT: April 1986 to September 1988. PROJECT CHIEF: Gregg J. Wiche. COOPERATING AGENCY: North Dakota State Water Commission. PROBLEM: The Devils Lake basin in northeastern North Dakota is a 3,800-square-mile closed basin in the drainage of the Red River of the North. About 3,130 square miles of the total 3,800 square miles is tributary to Devils Lake; the remaining 490 square miles is tributary to Stump Lake. High water levels of Devils Lake (and other terminal lakes) in recent years have threatened highways, agricultural land, recreational cabins, and communities located near the lake. Although high water levels have been the main hydrologic problem in the past 10 years, from 1880 to 1930 water levels declined. As water levels declined, lake salinity increased and the fish population declined. By 1940, Devils Lake consisted of a shallow brackish body of water. State government, local government, and water-resource management groups are concerned about protecting (1) their property, (2) the multimillion dollar fishing and tourist-trade industry, and (3) water for future development. Governmental groups have expressed additional concern about the effect of water-level and associated water-quality fluctuations of Devils Lake on leaching of nutrients and trace elements from bottom material enriched in such constituents from prior low-water stands. Wetland-drainage and agricultural practices also appear to be altering the availability of nutrients, pesticides, and sediment to the lake, with eutrophication recently becoming a problem. Expanding irrigation in the area poses a threat of mobilizing selenium and other potentially toxic trace elements and accelerating the concentration mechanisms active in all closed basins. Potential quantity and quality impacts in the Devils Lake basin in the next decade are numerous. Furthermore, because most of the lakes are connected hydraulically to shallow glacial aquifers that are the major water sources in the area, contamination of the surface-water system may have far-reaching consequences. To assist water management in the basin, a water-accounting model has been developed. However, uncertainties in some controlling input parameters made the model unsuitable for predictive use. Principal uncertainties exist for evaporation data and surface-water/ground-water interactions. Because these data are poorly known throughout eastern North Dakota, methods of investigation developed to refine these data and data determined for Devils Lake might improve our understanding of the hydrologic system throughout the eastern part of the State. OBJECTIVES: The purpose of this study is to measure the principal hydrologic components that cause water-level fluctuations of Devils Lake. The major emphasis will be to measure evaporation from Devils Lake and estimate the direction and magnitude of the ground-water flux component because these components are the least known. The accuracy of measurements of direct inflow will be improved with the installation of gages in currently ungaged tributaries. Precipitation will be measured by a network of observers throughout the basin. <u>APPROACH</u>: Evaporation will be computed using the energy-budget technique. Data that will be collected are incoming and reflected shortwave and longwave radiation, air temperature, dewpoint, temperature of discharge of inlet streams, temperature and quantity of ground-water seepage, lake-surface temperature, and periodic temperature surveys of the entire water body to measure changes in stored heat. The ground-water flux will be estimated by installing a series of shallow water-table wells around Devils Lake in transects extending from the shoreline to the topographic divide. Water-level measurements, conductivity, and temperature will be determined. Near-shore measurements of temperature and conductivity profiles will be made along transects across parts of the lake intersected by shallow aquifers. These profiles will be accompanied by in situ measurements of flow rate and direction in lake-bottom sediments using temporary piezometers. Measurements of precipitation falling on the lake will be refined by employing an observer network distributed around the lake. Additional gages will be installed to improve measurement of inflow to the lake. PROGRESS IN 1985: None; new project in 1986. <u>PLANS FOR 1986</u>: Meteorological instrumentation will be installed on and surrounding Devils Lake. Ground-water observation wells will be installed in transects radiating from the lake. Data collection will be initiated at the established stations and supplemented by thermal surveys of the lake to be conducted on a quarterly basis. Preliminary data evaluation will be used to plan next year's activities. REPORT PRODUCTS: Wiche, G.J., and others, Evaporation and ground-water interaction of Devils Lake, North Dakota (planned). #### BOARDS AND COMMISSIONS PROJECT NUMBER: ND 73-064. LOCATION: Bismarck, North Dakota. PERIOD OF PROJECT: Continuous. PROJECT CHIEF: L. Grady Moore. COOPERATING AGENCIES: Other Federal agencies. <u>PROBLEM:</u> To coordinate water-resources activities with International, other Federal, State, and local agencies, District personnel must participate actively on numerous boards and commissions. Participation frequently includes compilation, publication, and dissemination of meeting minutes or researching special concerns of participating agencies. OBJECTIVES: Primary objectives are (1) to assure impartial Federal representation on the International Souris River Board of Control (International Joint Commission) and the Yellowstone River Compact Commission and (2) to supply accurate, unbiased information to boards and commissions. APPROACH: Chair the meetings and provide administrative support to the Yellowstone River Compact Commission. Serve as member for the United States to the International Souris River Board of Control. Furnish information requested by members of the International Souris-Red River Engineering Board. PROGRESS IN 1985: The 1984 Annual Report of the International Souris River Board of Control was printed and distributed. Meetings of the Board were held January 24, 1985, in Bismarck, N. Dak., and May 22, 1985, in Devils Lake, N. Dak. Information was routinely furnished to parties concerned with Souris River streamflow. The 1984 Annual Report of the Yellowstone River Compact Commission was printed and distributed. The Commission met November 26, 1985, in Billings, Mont. PLANS FOR 1986: All meetings of the International Souris River Board of Control will be attended. The Annual Report for 1985 will be prepared and distributed. All meetings of the Yellowstone River Compact Commission and the Administration Committee will be attended. The Annual Report for 1985 will be prepared and distributed. Supplement 1. -- Publication by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986 | | Report<br>s availability | Available | Available | Available | Available | Available | |---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------| | | Number<br>of pages | 7.1 | 29 | 103 | 8 | <b>-</b> | | | Publication media | Water-Resources<br>Investigations 83-4205 | Professional Paper 1302 | Water-Supply Paper 2243 | National Atmospheric<br>Deposition Program<br>Technical Committee<br>Meeting, Abstract | Fourth National Symposium and Exposition on Aquifer Restoration and Ground-Water Monitoring, | | , | Author | Houghton, Berger,<br>Zander, and<br>Dutchuk | Miller | Miller and Frink | Houghton | Houghton and Berger | | | Report title | Atmospheric deposition: Sample handling, storage, and analytical procedures for chemical characterization of event-based samples in North Dakota | Basic concepts of kinematic-wave models | Changes in flood response of the<br>Red River of the North basin,<br>North Dakota-Minnesota | Differences in composition of<br>wet fall collected on weekly<br>and event basis in North Dakota | Effects of well-casing composition<br>and sampling methods on apparent<br>quality of ground water | | | Date<br>published | 1984 | 1984 | 1984 | 1984 | 1984 | Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued | • | | | | • | | |-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------|------------------------| | Date<br>published | Report title | Author | Publication media | Number<br>of pages | Report<br>availability | | 1984 | Ground-water resources of<br>Bottineau and Rolette Counties,<br>North Dakota | Randich and Kuzniar | North Dakota Geological<br>Survey Bulletin 78 | 41 | Available | | 1984 | Ground-water resources of Towner<br>County, North Dakota | Randich and Kuzniar | North Dakota Geological<br>Survey Bulletin 79 | 26 | Available | | 1984 | Hydrogeochemical controls on<br>the mobility of radiogenic<br>constituents at uraniferous<br>lignite mines in southwestern<br>North Dakota | Houghton, Wald, and<br>Anderson | North Dakota Academy of<br>Science, Proceedings | - | Available | | 1984 | Hydrogeochemical controls on<br>the mobility of radiogenic<br>constituents in mine spoils<br>and uraniferous lignite ash<br>in southwestern North Dakota | Houghton, Wald, and<br>Anderson | 1984 Rocky Mountain<br>Ground-Water<br>Conference,<br>Proceedings | 0 | Available | | 1984 | Hydrogeochemical controls on<br>the mobility of radiogenic<br>constituents in the coal-bearing<br>Fort Union Formation and in<br>lignite mines in western North<br>Dakota | Houghton, Wald, and Anderson | 1984 Rocky Mountain<br>Coal Symposium,<br>Proceedings | 25 | Available | Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued | Date<br>published | Report title | Author | Publication media | Number<br>of pages | Report<br>availability | |-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|--------------------|------------------------| | 1984 | Hydrogeochemistry of the upper<br>part of the Fort Union Group<br>in the Gascoyne lignite strip-<br>mining area, North Dakota | Houghton,<br>Thorstenson,<br>Fisher, and<br>Groenewold | Open File 84-131 | 184 | Available | | 1984 | Synopsis of ground-water and<br>surface-water resources of<br>North Dakota | Winter, Benson,<br>Engberg, Wiche,<br>Emerson, Crosby,<br>and Miller | Open File 84-732 | 127 | Available | | 1984 | Water-resources investigations in<br>North Dakota, Fiscal year 1984 | Hall and Kuzniar | Open File 84-429 | 52 | Available | | 1985 | Data uses and funding of the<br>streamflow-gaging program in<br>North Dakota | Ryan | Open File 85-349 | 53 | Available | | 1985 | Evaluation of the hydrologic system and potential effects of mining in the Dickinson lignite area, eastern Slope and western Stark and Hettinger Counties, North Dakota | Armstrong | Water-Resources<br>Investigations 84-4194 | 35 | Available | Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued | Date<br>published | Report title | Author | Publication media | Number<br>of pages | Report<br>availability | |-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|--------------------|------------------------| | 1985 | Geochemical processes in the<br>Gascoyne lignite mining area,<br>Bowman County, North Dakota | Fisher,<br>Thorstenson,<br>Croft, and<br>Houghton | Water-Resources<br>Investigations 84-4192 | 80 | Available | | 1985 | Geohydrologic reconnaissance of<br>the Avoca lignite deposit area<br>near Williston, northwestern<br>North Dakota | Horak and Crosby | Water-Resources<br>Investigations 85-4024 | 22 | Available | | 1985 | Ground-water data for McKenzie<br>County, North Dakota | Croft | North Dakota Geological<br>Survey Bulletin 80 | 455 | Available | | 1985 | Ground-water resources of<br>McKenzie County, North Dakota | Croft | North Dakota Geological<br>Survey Bulletin 80 | 57 | Available | | 1985 | Heat and water transport model for seasonally frozen soils in North Dakota: Study plan | Emerson | Workshop/Symposium:<br>Snow Management for<br>Agriculture,<br>Proceedings | 17 | Available | | 1985 | Inverse modeling of solute transport in shallow ground water, With an example of sulfate movement around a lignite mine in southwestern North Dakota | Houghton | North Dakota Academy of<br>Science, Proceedings | <b>-</b> | Available | Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued | Date<br>published | Report title | Author | Publication media | Number<br>of pages | Report<br>availability | |-------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|--------------------|------------------------| | 1985 | National Water Summary 1984North<br>Dakota ground-water resources | Crosby | Water-Supply Paper 2275 | 9 | Available | | 1985 | Progress report on the<br>geochemistry of the sulfur<br>cycle in northern Great Plains<br>coal mines | Houghton, Koob, and<br>Groenewold | Water-Resources<br>Investigations 85-4016 | 70 | Available | | 1985 | Small-area snow surveys on the<br>northern plains of North Dakota | Emerson, Carroll,<br>and Steppuhn | Water-Resources<br>Investigations 85-4026 | 22 | Available | | 1985 | Snowmelt trace-element enrichments<br>in prairie potholes and soils of<br>central North Dakota | Houghton and Foss | National Atmospheric<br>Deposition Program<br>Technical Committee<br>Meeting, Abstract | <b>-</b> | Available | | 1985 | Sulfur cycle in western coal mines | Houghton, Koob, and<br>Groenewold | National Water Well<br>Association | σ | Available | | 1985 | Supplement to inventory and analyses of information for flood plain management in North Dakota | Emerson and Wald | Open File 85-700 | 80 | Available | | 1985 | Use of chemical test papers to semiquantitatively determine mercury-vapor concentrations | Houghton | Water-Resources<br>Investigations 85-4012 | 15 | Available | Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued | Date<br>published | Report title | Author | Publication media | Number<br>of pages | Report<br>availability | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|--------------------|------------------------| | 1985 | Volatile trace-element concentrations in snowmelt contributions to streams monitored by hydrologic bench-mark network stations in the conterminous United States where average snowfall exceeds 12 inches | Houghton and<br>Schimke | Water-Resources<br>Investigations 85-4104 | 19 | Available | | 1985 | Water-resources activities of the U.S. Geological Survey in North Dakota, Fiscal year 1985 | Martin | Open File 85-558 | 124 | Available | | 1986 | The geohydrologic system and probable effects of mining in the Sand Creek-Hanks lignite area, Williams County, North Dakota | Armstrong | Water-Resources<br>Investigations 85-4089 | 38 | Available | | 1986 | Hydrology of the Devils Lake<br>basin, northeastern North<br>Dakota | Wiche, Hoetzer, and<br>Rankl | North Dakota State<br>Water Commission<br>Water-Resources<br>Investigation 3 | 98 | Available | | 1986 | Sources of sulfate in wet<br>deposition, North Unit of<br>Theodore Roosevelt National<br>Park, North Dakota | Houghton and Snow | North Dakota Academy of<br>Science, Proceedings | <del>-</del> | Available | Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued Supplement 1.--Publications by personnel of the U.S. Geological Survey, North Dakota District, for 1984, 1985, and 1986--Continued | Report<br>availability | In press | 1 | |------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------| | Number<br>of pages | 150 | 1 | | Publication media | Open File 83-221 | Reclamation-Research<br>Conference Speech | | Author | Crosby and Klausing | Moore | | Report title | Hydrology of area 47, northern<br>Great Plains and Rocky Mountain<br>coal provinces; North Dakota,<br>South Dakota, and Montana | U.S. Geological Survey surface-<br>water project activities related<br>to energy development in North<br>Dakota | | Date<br>published | : | <b>!</b> |